
~~~~~~~~~~ A.... "'" ".........• M SS A CI IU S ITTS

,ABORATORY FOR. I NSTITUTE 0F

COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TR-550

APPROXIMATION ALGORITHMS
FOR MULTICOMMODITY

FLOW AND SHOP
SCHEDULING PROBLEMS

Clifford Stein

"September 1992

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACIHUSETTS 02139



??CAT DCCUMEiNTATJCN PAG(-_-_ ONeNO )'"0768
Z•A. -e )WM ,'0 -3 w7: rcIb-.:tC s8 ,

0,~-:.. '. 2423C lrc 1,01 0?- ! i i"c~~ nc e~cze! oier~c', "eccm: .'e ~ :' 4 %n~).*' : C .Z!

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Approximation Algorithms for Multicommodity Flow and

Shop Scheduling Problems

6. AUTHOR(S)

Stein, C.

7. RFORMING ORGANIZATION NAME(S)AND AODRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

MIT, Laboratory for Computer Science
545 Technology SquareI
Cambridge, MA 02139 1 MIT/LCS/TR-550

9. SPONSORING, ?ACNITCRING AGENCY NAME(S) AND AODRESS(ES) 10. SPONSORING. MONITORING
AGENCY REPORT NUMBER

DARPA N00014-89-J-1988

11. SUPPLEMENTARY NOTES

"2a. oIs7RIBU ric.c / AVAILAaILITY STATEMENT, 1.2. 3ISTRIBUT;CN C:. E

In this thesis, we give efficient approximation algorithms for two classical combinatorial optimization
problems: mulftcommodity /low problems and shop scheduling problems. The algorithms we develop for
these problems yield solutions that are not necessarily optimal, but come with a provable performance
guarantee; that is, we can guarantee that the solution found is within a certain percentage of the optimal
solution. This type of algorithm is known as an approximation algorithm. Our results show that by allowing
a small error in the solution of a problem, it is often possible to gain a significant reduction in the running
time of an algorithm for that problem.

In Chapter 2, we study the multicommodity flow problem. The multicommodity flow problem involves
simultaneously shipping several different commodities from their respective sources to their sinks in a
single network so that the total amount of flow going through each edge is no more than its capacity.
Associated with each commodity is a demand, which is the amount of that commodity that we wish to ship.
Given a multicommodity flow problem, one often wants to know if there is a feasiibe flow, i.e., i1 it is
possible to find a flow that satisfies the demands and obeys the capacity constraints. More generally, we
might wish to know the maximum percentage z such that at least z percent of each demand can be
shipped without violating the capacity constraints. The latter problem is known as the concurrent flow
problem. Our algorithms are approximation algorithms that find e-optimal solutions to the concurrent flow
problem, that is, solutions in which z is within a (1 - c) factor of the minimum possible value. In particular,

we show that for any c > 0, an c-optimal to the n -node, m -edoe, k -commodity concurrent flow problem
can be found bya raindonized algorithm in O (C- 3 kmn log k log3 n) time and by a deterministic aorithm in
O0(c,2kmnlogklogen) fime.

14. SUBJEC7 TERMS 75..,:U MBER OF 'AGES

179
multicommodity flow, scheduling, combinatorial optimization, 116. PRICE IZDE
network algorithms, approximation algorithms, randomized alorithns

17. SECURITY CLASSIFiCATIC.I 18. SECURITY CLASSIFICATION 19. SECURITY CLASSiFICATION 20. LiMITATON OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

NS 7 7540-0,.280-500 Stanaaro ;Orm :98 Rev2
D1S1,01 0V 'Ns. 1:j Z 39



Approximation Algorithms for Multicommodity Flow and Shop

Scheduling Problems

by

Clifford Stein

B.S.E., Electrical Engineering and Computer Science
Princeton University

(1987)
S.M., Electrical Engineering and Computer Science

Massachusetts Institute of Technology
(1989)

Submitted to the Department of Electrical Engineering and Computer Science •
in partial fulfillment of the requirements for the degree of Accesion For

Doctor of Philosophy NTIS CRA&
D -1IC TAB E

U.- announced
at the Justification

MASSACHUSETTS INSTITUTE OF TECHNOLOGY By ..

Disz ibu;tion I

September 1992

Av . o-r

( Massachusetts Institute of Technology 1992

Signature of Author
Department of Electrical Engineering and Computer Science

August 10, 1992

Certified by
David B. Shmoys

Associate Professor of Industrial Engineering and Operations Research,
Cornell University
Thesis Supervisor

Accepted by
Campbell L. Searle

Chairman, Departmental Committee on Graduate Students



Approximation Algorithms for Multicommodity Flow and Shop Scheduling

Problems

by

Clifford Stein

Submitted to the Department of Electrical Engineering and Computer Science

on August 10, 1992,

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Abstract

In this thesis, we give efficient approximation algorithms for two classical combinatorial op-
timization problems: multicommodity flow problems and shop scheduling problems. The algo-
rithms we develop for these problems yield solutions that are not necessarily optimal, but come
with a provable performance guarantee; that is, we can guarantee that the solution found is
within a certain percentage of the optimal solution. This type of algorithm is known as an
approximation algorithm. Our results show that by allowing a small error in the solution of a
problem, it is often possible to gain a significant reduction in the running time of an algorithm
for that problem.

In Chapter 2, we study the multicommodity flow problem. The multicommodity flow prob-
lem involves simultaneously shipping several different commodities from their respective sources
to their sinks in a single network so that the total amount of flow going through each edge is no
more, than its capacity. Associated with each commodity is a demand, which is the amount of
that commodity that we wish to ship. Given a multicommodity flow problem, one often wants
to know if there is a feasible flow, i.e., if it is possible to find a flow that satisfies the demands and
obeys the capacity constraints. More generally, we might wish to know the maximum percent-
age z such that at least z percent of each demand can be shipped without violating the capacity
constraints. The latter problem is known as the concurrent flow problem. Our algorithms are
approximation algorithms that find E-optimal solutions to the concurrent flow problem, that is,
solutions in which z is within a (1 - c) factor of the minimum possible value. In particular, we
show that for any c > 0, an E-optimal solution to the n-node, m-edge, k-commodity concurrent
flow problem can be found by a randomized algorithm in O(c--kmn log k log3 n) time and by a
deterministic algorithm in O(c`-kmnlogklog3 n) time.

Our expected running time is the same (up to polylog factors) as the time needed to
compute k maximum-flows, thus giving the surprising result that approximately computing
a k-commodity concurrent flow is about as difficult as exactly computing k single-commodity
maximum flows. In fact, we formally prove that a k-commodity concurrent flow problem can be
approximately solved by approximately solving O(k log k log n) minimum-cost flow problems.

The multicommodity flow problem has several important applications. Many classical prob-

iii



iv

lems in Operations Research can be phrased as multicommodity flow problems, including:
telecommunications problems, import-export problems, freight transport and scheduling, net-
work design, freight assignment in the less-that-truckload trucking industry, traffic planning,
and busing students to schools. Multicommodity flow can also be used to find good separators
for graphs, yielding divide-and-conquer algorithms for several NP-hard graph problems. In
particular, the results in this thesis can be used to give the fastest polylogarithmic approxima-
tions to several problems including: VLSI channel routing, minimum cut linear arrangement,
minimum area layout, v&-bifurcators of a graph, minimum feedback-arc set, graph embed-
ding problems, chordalization of a graph, register sufficiency, 'minimum deletion of clauses in
a 2CNF =_ formula, via minimization, and the edge-deletion graph bipartization problems.
These problems will be discussed in Chapter 3. In addition we will show how, in some cases,
our algorithms can be adapted to find integral solutions. The ability to do so is significant,
since the integral multicommodity flow problem is likely to be more difficult than the prob-
lem of finding an optimal flow that is not necessarily integral: the former problem is NP-hard
whereas the latter is solvable in polynomial time via linear programming.

Not only do our algorithms have provably efficient running times, but they perform well in
practice. In Chapter 4 we discuss an implementation of one variant of the algorithm presented
in Chapter 2. The results, while preliminary, are rather encouraging. For large problems our
implementation significantly outperforms a good simplex-based linear programming code. In
fact, we have been able to solve problems that are larger than those that can be solved by good
simplex-based codes. In particular, we are able to solve problems in which there are a large
number of commodities.

In Chapter 5, we turn to the problem of shop scheduling. We give the first polylogarithmic
approximation algorithms for the job-shop problem, flow-shop problem, and several extensions.
Our algorithms are randomized and combine techniques from two seemingly disparate fields of
study: vector-sum theorems and packet routing algorithms.

In Chapter 6, we show how to make the shop scheduling algorithms deterministic. Our
algorithm makes use of some recent extensions of our multicommodity flow techniques and
unifies many of the ideas in this thesis, since it is necessary to find an approximately optimal
integral solution to a generalized version of the multicommodity flow p:oblem. The algorithms

we use are closely related to those used for the multicommodity flow problem.

Keywords: Multicommodity Flow, Scheduling, Combinatorial Optimization, Network Algo-
rithms, Approximation Algorithms, Randomized Algorithms.

Thesis Supervisor: David B. Shmoys

Title: Associate Professor of Industrial Engineering and Operations Research, Cornell University



v

Acknowledgments
I have been lucky to have had so many wonderful teachers, colleagues and friends. David

Shmoys is a wonderful advisor. Even though he left for Cornell three years ago, he made sure
that the physical distance did not present any problems, save my increased use of dramamine.
He has been generous with his time and and willingness to dispense sound advice, on both
technical and non-technical matters. I have learned much about research, scholarship and
integrity from David.

I have also learned a great deal from tva Tardos, especially throughout collaborations over
the past few years. I appreciate the "advisor-like" concern she has shown, and her willingness
to share her ideas. I also thank both David and Eva for naming their daughter after my wife.

One advantage of having a long-distance advisor was that it gave me the opportunity to
work closely with other people. Early in my graduate career, I worked closely with Philip Klein.
The first set of results on multicommodity flow was done in collaboration with Philip. He has
taught me a great deal about research, writing and determination. I also thank him for the
conversations about the implementation work. I am also grateful to Jim Orlin for allowing me
to be part of his research group and have enjoyed my collaborations with him. I also thank
him for being a reader on my thesis committee. Thanks to Charles Leiserson for being a reader
on my thesis committee and for clearing away the many beaurocratic hurdles that arose. From
Charles' careful reading and copious comments, I learned more about the art of scientific writing
than I had imagined was possible. I also thank Tom Leighton -or his support and advice and
take this opportunity to state publicly that he is a better shortstop than I have previously given
him credit for. I thank Jim, Charles and Tom for recognizing the potential problems of having
a long-distance advisor, and for filling various aspects of that role. In particular, they were all
generous in suggesting interesting problems to work on.

I've also enjoyed my collaboration with Joel Wein. Joel first got me interested in shop
scheduling and has been a constant source of interesting problems and good ideas on how to
solve them. I'm also grateful for the information about the Knicks with which he has provided
me.

Most of the implementation work was done during the summer I spent at Bell Labs. I
learned a great deal working with Peter Shor and Tishya Leong, and I thank David Johnson
for his support and advice on the project.

I can't imagine a better academic environment that the Theory Group at MIT. I've learned a
great deal from my fellow students and I'd like to thank all of them, particularly Avrim Blum,
Tom Cormen, Michel Goemans, Mark Hanson, Bruce Maggs, James Park, Cindy Phillips,
Satish Rao, Eric Schwabe, Joel Wein and David Williamson. I've also enjoyed the opportunity
to participate in a variety of intramural sports and I thank the members of the Running Time
softball team, Execution Time hockey team and the Hoopsorts basketball team for providing
a great deal of exercise, entertainment and friendship. I have also been fortunate to share an
office with, at various times, Tom Cormen, Sally Goldman, Lalita Jategaonkar, Bruce Magi,
and Eric Schwabe. I'd particularly like to thank Tom for his help with the Macintosh and for
giving me the advice, "When the ball is hit over your head, turn around, run hard to where it
will be, then and only then do you stick your glove out." The support sta.ff has also helped to
create a friendly environment. Special thanks to Be Hubbard for everything she does, William
Ang for his computer help, David Jones for Latex and Postscript help, and Arlene Benford,



vi

Julie Sweedler, Denise Sergent-Leventhal and Becky Bisbee for all their help.

I'm also grateful to Ken Steiglitz and Bob Tarjan for getting me interested in combinatorial
optimization and theoretical computer science, and to Esther Rifkin, Ron Mezzadri and Miriam
Waks for early encouragement in the fields of mathematics and computer science.

I acknowledge the support of a Bell Labs Graduate Fellowship, a GE Graduate Fellowship,
Air Force Contracts AFOSR-86-0078 and AFOSR-89-0271, DARPA contract N00014-89-J-1988,
and the National Science Foundation under a PYI awarded to David Shmoys, with matching
support from Sun and UPS.

Not only have I gained a great deal of knowledge in the past five years, but more importantly,
I have also gained a wife and companion, Rebecca Ivry. I thank Rebecca for standing by me
and providing encouragement, support, love and understanding throughout. ] -' !'_!o grateful
to my parents Irene and Ira Stein and my sister Amy Stein, for their constant suppc-.' .,,d love.



Contents

1 Introduction 1

Introduction 1

2 Multicommodity Flow Algorithms 9

2.1 Introduction ...... ........ .... .. ...... ... . .... ... .. 9
2.2 Prelim inaries ..... ................................. 13

2.2.1 Optimality Conditions ............................. 19

2.3 Relaxed Optimality Conditions .................................. 23
2.4 Algorithms for the General Concurrent Flow Problem ................... 29

2.4.1 Solving Concurrent Flow Problems ........................... 30
2.4.2 Dealing with Exponentiation ............................... 53

2.4.3 Implementing One Iteration ................................ 58
2.5 The Unit Capacity Case ....................................... 61

2.5.1 Using the Results for the General Case ........................ 62
2.5.2 Solving Unit Capacity Concurrent Flow Problems ................ 64

2.5.3 Implementing One Iteration ................................ 70

2.5.4 Dealing with Exponentiation ............................... 74
2.5.5 Further implementation details .............................. 77

2.6 Open Problems ............................................ 80

3 Applications of Multicommodity Flow 83
3.1 Introduction ............................................... 83
3.2 An Integer Theorem for Multicommodity Flows ....................... 83

3.2.1 Applications to VLSI routing .............................. 86
3.3 Sparse Cuts ............................................... 87

3.3.1 Review of Previous Results on Sparse Cuts ..................... 88
3.3.2 Speeding up the Unit-Capacity Case .......................... 90
3.3.3 Speeding up the General Case .............................. 91
3.3.4 A Faster Algorithm for Low Degree Graphs ..................... 96

4 Implementing Multicommodity Flow Algorithms 101

vii



viii CONTENTS

4.1 Introduction .............................................. 101
4.2 Previous Results ........................................... .101
4.3 An Implementation .......................................... 103

4.3.1 Grouping Commodities .................................. 103
4.3.2 Choosing a Commodity to Reroute .................. ....... 104
4.3.3 Implementing the Minimum-cost Flow ........................ 105
4.3.4 Choosing Constants and Rerouting .......................... 105

4.4 Experimental Results ................................... 108
4.4.1 Dependence on the Error Parameter ......................... 108
4.4.2 Dependence on the Number of Commodities .................... 109
4.4.3 Comparison to Other Algorithms ............................ 110
4.4.4 The Results ......................................... 111
4.4.5 An Anomaly ......................................... 114

4.5 Conclusions and Open Problems ................................. 115

5 Approximation Algorithms for Shop Scheduling 129
5.1 Introduction .............................................. 129
5.2 The Basic Algorithm ......................................... 135
5.3 Reducing the Problem ........................................ 141

5.3.1 Reducing Pmax ........................................... 141
5.3.2 Reducing the Number of Jobs .............................. 142
5.3.3 A Fixed Number of Machines .............................. 144

5.4 Applications to More General Scheduling Problems ................... 144
5.5 The Open Shop Problem ...................................... 146
5.6 Conclusions and Open Problems ................................. 148

6 Derandomizing Shop Scheduling Via Flow Techniques 151
6.1 A Deterministic Arproximation Algorithm .......................... 152
6.2 The Framework ............................................ 152
6.3 The Solution ........ ...................................... 157



Chapter 1

Introduction

Given a particular combinatorial optimization problem, there are many possible approaches to

finding a solution. Perhaps the most common strategy is to rely on a general purpose method,

such as linear programming, that solves a large class of problems. The advantages of using such

a method are clear - a single computer program that implements this method can solve many

different problems. The only effort involved in solving a new problem in this class is to express

it in the proper form. However, general purpose methods have their disadvantages as well. By

expressing a particular problem as an instance of a more general problem, one may ignore some

structure that makes the original problem easier to solve.

In this thesis, we develop algorithms that exploit the particular combinatorial structure of

the problem at hand. This approach leads to algorithms that are faster than previously known

ones, and which are able to solve larger sized instances.

In particular, we give efficient approximation algorithms for two classes of problems: multi.

commodity flow problems and shop scheduling problems. These are basic and classical problems

in combinatorial optimization. The algorithms we develop for these problems yield solutions

that are not necessarily optimal, but come with a provable performance guarantee; that is, we

can guarantee that the solution found is within a certain percentage of the optimal solution.

This type of algorithm is known as an approximation algorithm. For many applications, an

optimal solution is not needed, either because the application can be solved just as easily with

an approximate solution, or because the input data itself may only be accurate up to some

1



2 INTRODUCTION

fixed precision. Our results show that by allowing a small error in the solution of a problem,

it is often possible to gain a significant reduction in the running time of an algorithm for that

problem.

The first problem we study is the multicommodity flow problem. The multicommodity flow

problem involves simultaneously shipping several different commodities from their respective

sources to their sinks in a single network so that the total amount of flow going through each

edge is no more than its capacity. Associated with each commodity is a demand, which is the

amount of that commodity that we wish to ship. Given a multicommodity flow problem, one

often wants to know if there is a feasible flow, i.e., if it is possible to find a flow that satisfies

the demands and obeys the capacity constraints. More generally, we might wish to know the

maximum percentage z such that at least z percent of each demand can be shipped without

violating the capacity constraints. The latter problem is known as the concurrent flow problem,

and is equivalent to the problem of determining the minimum factor by which the capacities

can be multiplied so that it is possible to ship 100% of each demand. For our algorithms, it

is convenient to state the concurrent flow problem in a different, but equivalent form. We are

given a network and a set of commodities. Let the congestion of an edge be the ratio of the

total flow on that edge to its capacity. We wish to find a way to route each commodity so

that the maximum edge congestion is minimized. We denote the value of the maximum edge

congestion by A and the minimum possible value of A by A*. Our algorithms are approximation

algorithms that find E-optimal solutions, that is, solutions in which A < (1 + c)A*.

An example of a concurrent flow problem appears in Figure 1.1. The input consists of a

network and a specification of the commodities. Each edge is labeled with its capacity. The goal

is to find a solution that sends 1 unit of flow between v2 and vs, 1 unit of flow between v3 and

v4 and 2 units of flow between v, and v5 . In Figures 1.2 and 1.3, we give two solutions to the

concurrent flow problem. In Figure 1.2, it is easy to verify that the demands are all satisfied.

Further, the maximum edge congestion A = 1, because on all edges the flow is less than or equal

to the capacity. In Figure 1.3, the maximum edge congestion A = -1, because on all edges the

flow is less than or equal to one half the capacity. As we will prove in Chapter 2, the solution

in Figure 1.3 is actually the optimal solution to this problem. Throughout the thesis, we use n,

m and k to denote the number of nodes, edges and commodities, we assume that the demands



3

41

V2  4V 4

commodity s I demand
1 V2  V5  1

2 V3  V4  1

3 VI VS 2

Figure 1.1: A sample problem

4 -

V4 --

commodity s I demand rymbol
1 V2  V5 1 --

2 V3  V4  1

3 VI VS 2 -

Figure 1.2: A suboptimal solution



4 INTRODUCTION

3 3 V

commodity s t demand symbol
1 V2  V5  1 --

2 V3  V4  1
3 vY V5  2

Figure 1.3: An optimal solution

and the capacities are integral, and use D and U to denote the largest demands and capacities,

respectively. For the example in Figure 1.1, n = 5, m = 6, k = 3, D = 2 and U = 4.

In this thesis, we describe the first combinatorial approximation algorithms for the concur-

rent flow problem. Given any positive c, the algorithms find c-optimal solutions. The running

times of the algorithms depend polynomially on c 1 , and are significantly better than the run-

ning times of previous algorithms when c is a constant. In other words, by trading a small

amount of accuracy, we are able to obtain large improvements in the time needed to solve a

multicommodity flow problem. As an e".mple of the running times we can achieve, we state one

of our results. We define the simple concurrent flow problem to be a concurrent flow problem

in which each commodity has exactly one source and one sink.

Theorem 1.0.1 For any c > 0, an c-optimal solution for the simple concurrent flow problem

can be found by a randomized algorithm in O(,- 3 kmnlogk log3 n) time and by a deterministic

algorithm in O(c- 2k2mn log k log 3 n) time.

Our expected running time is the same (up to polylog factors) as the time needed to

compute k maximum-flows, thus giving the surprising result that approximately computing

a k-commodity concurrent flow is about as difficult as exactly computing k single-commodity

maximum flows. In fact, we formally prove that a k-commodity concurrent flow problem can be



5

approximately solved by approximately solving O(k log k log n) minimum-cost flow problems.

The only previously-known algorithms for solving the general concurrent flow problem use

linear programming. The concurrent flow problem can be formulated as a linear program

in O(mk) variables and O(nk + m) constraints. Any polynomial-time linear programming

algorithm can be used to solve the problem optimally. Kapoor and Vaidya [30] gave a method

to speed up the matrix inversions involved in Karmarkar-type algorithms for multicommodity

flow problems; combining their technique with Vaidya's linear programming algorithm that uses

fast matrix multiplication [67] yields a time bound of O(kS-n-ms log(nDU)) for the concurrent

flow problem with integer demands and an O(k 2
-
5 n2m 5 log(nc 1 DU)) time bound to find an

approximate solution. When c is not too small, for example when c = E(1), the running time

of our algorithm is faster for all possible instances of a simple concurrent flow problem.

Before continuing, we emphasize the difference between approximation algorithms and the

common approach of solving problems through the use of heuristics. Heuristics are procedures

that are applied when it is deemed impractical to use an algorithm that always finds the optimal

solution. Heuristics typically run much faster than algorithms that find optimal solutions, and

while they may often find solutions that are optimal or very close to optimal, there are no

guarantees on the quality of the solution found. In contrast, the algorithms in this thesis all

come with guarantees.

Our approach to solving the concurrent flow problem can be easily understood in pseudo-

economic terms. The essential complexity of the problem arises because the different commodi-

ties are all competing for the same scarce resource, the capacities of the edges. In order to

model this process, we introduce a pricing scheme. Consider a particular flow, say the one

that appears in Figure 1.2. We introduce a price on each edge, to represent the congestion, or

percentage utilization of that edge. If an edge is heavily congested, it has a high price, and if

an edge is lightly congested it has a low price. For example, edge viv 3 , which has congestion

2/2 = 1, has a higher price than edge v4v5 , which has congestion 1/4. Once we have these

prices, a particular routing for a commodity has a cost, which is based on the prices of the

edges that the commodity is using. Consider commodity 3. It sends flow over the two edges

with maximum congestion, i.e., the two highest priced edges. A cheaper way to send its flow

might be over the bottom path vIv 2V4V5 . Our algorithm recognizes this situation and reroutes



6 INTRODUCTION

some of the flow of commodity 3 off its current path and onto the path v1v2 v4v5 . For example,

if half the flow were rerouted, we would obtain the flow depicted in Figure 1.3. After rerouting,

the congestion of edges change, and hence the prices change.

While this description is a highly simplified version of our algorithm, it does capture the

essential ideas. The key to the efficiency of our algorithm is twofold. First, we can phrase

this question of finding a cheap way to route flow as a minimum-cost flow problem, which

is a "well-solved" problem. Second, we can show that, for the right choice of parameters, a

rerouting procedure does not have to be executed too many times. This is the difficult part

of the analysis. We need to show that every iteration of our algoi ithm makes progress, for

some suitably defined notion of progress. We also need to be able to detect when our solution

is E-optimal. Note that we are requiring that we can detect when our solution is within a

(1 + c) factor of optimal, without knowing what the optimal value is. To do this, we develop a

notion of relaxed optimality and a detection scheme that uses suitably relaxed versions cf the

complementary slackness conditions of linear programming.

A detailed description of this algorithm, along with algorithms for an important special

case, that in which all edges have capacity 1, appears in Chapter 2.

The multicommodity flow problem has several important applications. Many classical prob-

lems in Operations Research can be phrased as multicommodity flow problems, including:

* telecommunications problems,

* import-export problems,

* freight transport and scheduling,

* network design,

* freight assignment in the less-that-truckload trucking industry,

9 traffic planning. and

* busing students to schools.

Multicommodity flow can also be used to find good separators for graphs, yielding divide-

and-conquer algorithms for several NP-hard graph problems. In particular, the results in this



7

thesis can be used to give the fastest polylogarithmic approximations to a number of problems

including:

"* VLSI channel routing,

"* minimum cut linear arrangement,

"* minimum area layout,

"* V'1-bifurcators of a graph,

"* minimum feedback-arc set,

"* graph embedding problems,

"* chordalization of a graph,

"* register sufficiency,

"* minimum deletion of clauses in a 2CNF S formula,

"* via minimization, and

o the edge-deletion graph bipartization problems.

These problems will be discussed in Chapter 3. In addition we will show how, in some cases, our

algorithms can be adapted to find inth 'al solutions. The ability to do so is significant, since

the integral multicommodity flow problem is likely to be more difficult than the problem of

finding an optimal flow that is not necessarily integral: the former problem is NP-hard whereas

the latter is solvable in polynomial time via linear programming.

Not only do our algorithms have provably efficient running times, but they perform well in

practice. In Chapter 4 we discuss an implementation of one variant of the algorithm presented

in Chapter 2. The results, while preliminary, are rather encouraging. For large problems our

implementation significantly outperforms a good simplex-based linear programming code. In

fact, we have been able to solve problems that are larger than those that can be solved by good

simplex-based codes. In particular, we are able to solve problems in which there are a large

number of commodities.



8 INTRODUCTION

In Chapter 5, we turn to the problem of shop scheduling. We give the first polylogarithmic

approximation algorithms for the job-shop problem, flow-shop problem, and several extensions.

Our algorithms are randomized and combine techniques from two seemingly disparate fields of

study: vector-sum theorems and packet routing algorithms.

In Chapter 6, we show how to make the shop scheduling algorithms deterministic. Our

algorithm makes use of some recent extensions of our multicommodity flow techniques and

unifies many of the ideas in this thesis, since it is necessary to find an approximately optimal

integral solution to a generalized version of the multicommodity flow problem. The algorithms

we use are closely related to those used for the multicommodity flow problem.

Throughout this thesis, we assume familiarity with the basic concepts of linear and integer

programming. While none of our algorithms actually rely on a procedure for linear program-

ming, some of the proofs rely on well-known results about linear programming. We refer the

reader who is unfamiliar with linear programming to a basic textbook such as that of Chv~ital

[11] or Schrijver [55].

We include an glossary of notation.



Chapter 2

Multicommodity Flow Algorithms'

2.1 Introduction

The multicommodity flow problem iivolves simultaneously shipping several different commodi-

ties from their respective sources to their sinks in a single network so that the total amount

of flow going through each edge is no more than the edge's capacity. Associated with each

commodity is a demand, which is the amount of that commodity that we wish to ship. Given

a multicommodity flow problem, one often wants to know if there is a feasible flow, i.e., if it

is possible to find a flow that satisfies the demands and obeys the capacity constraints. More

generally, we might wish to know the maximum percentage z such that at least z percent of

each demand can be shipped without violating the capacity constraints. The latter problem

is known as the concurrent flow problem, and is equivalent to the problem of determining the

minimum ratio by which the capacities must be uniformly increased in order to ship 100% of

each demand. For our algorithms, it is convenient to state the concurrent flow problem in a

different, but equivalent form. We are given a network and a set of commodities. Let the

congestion of an edge be the ratio of the flow on that edge to its capacity. We wish to find a

way to route each commodity so that the maximum edge congestion is minimized. We denote

the value of the maximum edge congestion by A and the minimum possible maximum edge

congestion by A*. Our algorithms are approximation algorithms that find E-optimal solutions,

'This chapter contains joint work with Tom Leighton, Fillia Makedon, Serge Plotkin, tva Tardos and Spyros
Tragoudas (42] and joint work with Philip Klein, Serge Plotkin and tva Tardos [35].

9



10 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

ones in which A < (1 + C)A.

In this chapter, we describe the first combinatorial approximation algorithms for the con-

current flow problem. Given any positive E, the algorithms find an c-optimal solution. The

running times of the algorithms depend polynomially on c-' and are significantly better than

those of previous algorithms when c is a constant. More specifically, we prove the following

result. Throughout, we use n, m and k to denote the number of nodes, edges and commodities,

we assume that the demands and the capacities are integral, and use D and U to denote the

largest demands and capacities, respectively. We also assume, for now, tuat e".h commodity

has one source and one sink. We refer to this problem as the simple multicommodity flow

problem.

Theorem 2.1.1 For any c > 0, an c-optimal solution for the simple concurrent flow problem

can be found by a randomized algorithm in O(c-3kmn log k log3 n) time and by a deterministic

algorithm in O(c-k 2mn log k log3 n) time.

A complete table of results appear at the end of this introduction in Figure ".1.

Our expected running time is the same (up to polylog factors) as the time needed to com-

pute k maximum-flows, thus giving the surprising result that approximately computing a k-

commodity concurrent flow is about as difficult as computing k single commodity maximum-

flows. In fact, we formally prove that an instance of a k-commodity flow problem can be

approximately solved by approximately solving O(k log k log n) minimum-cost flow problems.

The running times in the above theorem can be improved when k is large. Let k" denote

the number of different sources. In both the randomized and the deterministic algorithm we

can replace k in the running time by k* at the expense of having to replace one of the log n

terms by a log(nU). Notice that k is at most n for all simple multicommodity flow problems.

As a consequence of our approximation algorithm for the concurrent flow problem, we obtain

a relaxed decision procedure for multicommodity flow feasibility; that is, given an instance of

the multicommodity flow problem, we can either prove that it is infeasible, or give a feasible

flow for the problem in which the capacity of each edge increased by a factor of 1 + c. Since

in practice, the input to a multicommodity flow problem may have some measurement error,

by making i small enough, we can obtain a procedure for determining feasibility up to the



2.1. INTRODUCTION 11

precision of the input data.

An important special case of the concurrent flow problem occurs when all edge capacities are

1. For this special case, we can give even faster algorithms. The algorithms for the case when

the edge capacities are 1 solve a series of shortest path problems instead of a series of minimum-

cost flow problems. The shortest-path variant of the algorithm performs more iterations than

minimum-cost flow version, but each iteration of the shortest path variant runs in less time than

the minimum-cost flow based variant. In some cases, the shortest-path based algorithm yields

faster algorithms. Historically, this shortest-path variant for the unit-capacity case preceded

the general minimum-cost flow based variant. In fact, the original version of the algorithm

for the general case used a series of shortest path computations, rather than minimum-cost

flow computations. In spite of the fact that a minimum-cost flow can be found via a series

of shortest path computations, by doing the minimum-cost flow computations directly, we are

able to obtain faster algorithms.

The only previously known algorithms for solving (or approximately solving) the general

concurrent flow problem use linear programming. The concurrent flow problem can be for-

mulated as a linear program in O(mk) variables and O(nk + m) constraints. Any polyno-

mial time linear programming algorithm can be used to solve the problem optimally. Kapoor

and Vaidya [30] gave a method to speed up the matrix inversions involved in Karmarkar-type

algorithms for multicommodity flow problems. Combining their technique with Vaidya's lin-

ear programming algorithm that uses fast matrix multiplication [67] yields a time bound of

O(k 3 n3m- log(nDU)) to obtain an optimal solution to the concurrent flow problem with in-

teger demands and an O(k 2 5n2m. 5 log(nc-DU)) time bound to find an approximate solution.

The only previous combinatorial polynomial approximation algorithms for concurrent flow

problems only handle the special case when all the capacities are 1. For this special case,

Shahrokhi and Matula [59] gave an algorithm that ran in O(c 5 nm") time. Our algorithm is

based on this work, so we describe the basic ideas here.

The algorithm starts by finding a flow that satisfies the demands but not the capacity

constraints. The algorithm then repeatedly reroutes flow so as to decrease the maximum flow

on any edge. To guide the rerouting, they assign lengths to each edge and then reroute flow off

a path that is long with respect to those lengths onto one that is short with respect to these



12 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

lengths.

In the unit capacity case, our approach differs from that of Shahrokhi and Matula in several

ways. We develop a framework of relaxed optimality conditions that allows us to measure the

congestion on both a local and a global level, thereby giving us more freedom in choosing which

flow paths to reroute at each iteration. We exploit this freedom by using a faster randomized

method for choosing flow paths. In addition, this framework also allows us to achieve greater

improvement as a result of each rerouting.

In the general case, we must first develop the appropriate framework to handle general

capacities. We will develop more general relaxed optimality conditions. Also, we are able to

reroute an entire commodity during each iteration instead of only a single path of flow. To do

this rerouting , we compute a minimum-cost flow in an auxiliary graph and reroute a portion

of the flow accordingly. As a consequence, we are able to make much greater progress during

each iteration. Of course, the time to run each iteration goes up, but the tradeoff proves to be

worthwhile since the improvement obtained in each iteration is large enough so that we need

to solve only O(k log k log n) minimum-cost flow problems in order to get an approximately

optimal solution.

The running times of the presented algorithms depend polynomially on c- . The determinis-

tic algorithm runs in time proportional to C-2 and the randomized one runs in time proportional

to C-3 . For the randomized algorithm, Goldberg [20] and Grigoriadis and Khachiyan [26] have

shown how to improve the dependence on c of the randomized algorithm to E-2.

Our model of computation is the RAM. We shall use the elementary arithmetic operations

(addition, subtraction, comparison, multiplication, and integer division), and count each of

these as a single step. All numbers occurring throughout the computation will have O(log(nU))

bits. For ease of exposition we shall first use a model of computation that allows exact arithmetic

on real numbers and assumes that exponentiation is a single step. We then show how to convert

the results to the usual RAM model.



2.2. PRELIMINARIES 13

J Scenario Running Time

General, randomized 0 rmnk(c- 3 + logk)min log n2 ,loglogn logn

General, deterministic 0 mnk 2(c-' + log k) min ilog (') ,log log n Ilog n)
0 rank*2(C-2 + log k*)min •log (22), log log(-nU)j log(nU))

Unit capacity, randomized Q((kC- 1 + Mn- 3 logn)(m + nlogn))
0(km./ 2 log2 n(c-3 + log k))

Unit capacity, deterministic O(((k + C-2m) log n)(k*n logn + m(log n + min {k, ko(log du= + 1)))))
O(k 2 m 3 /2 log2 n(C-2 + log k))

Unit capacity, e = 0(1) O(m(k + m) log n)
randomized

Unit capacity, c = 0(1) O(m(k + m)(log n + min {k, k* (log dm. + 1)) log n))
deterministic
Unit capacity, unit demand, O(rn log n log k(m + n log n + k log k))
S= 0(1), randomized

Figure 2.1: Some of our running times for the multicommodity flow problem. The bounds
are for an n-node, m-edge graph with maximum edge capacity U and maximum demand dm.•.
There are k commodities and k" distinct sources.

2.2 Preliminaries

Throughout this chapter we use the notation A', where A E {R,Z,R+,Z+1 and S E {V,E}

to denote an 1S5-dimensional vector in which each element is a member of the set A. The

component of 3 E As corresponding to, say node v, is denoted by /3(v).

An instance I = (G, u, KI) of the simple multicommodity flow problem consists of an undi-

rected graph G = (V, E) with vertex set V and edge set E, a capacity vector u E RE, and

a specification KI of k commodities, numbered 1 through k, where the specification for com-

modity i consists of a source-sink pair si, ti E V and a non-negative demand di. We denote the

number of distinct sources by k*, the number of nodes by n, and the number of edges by m.

For notational convenience we assume that m > n, and that the graph G is connected and has

no parallel edges. Also, for notational convenience, we arbitrarily direct each edge. If there is

an edge directed from v to w, this edge is unique by assumption, and we denote it by vw. We

assume that the capacities and the demands are integral, and denote the largest capacity by U

and the sum of the demands by D.



14 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

A multicommodity flow f consists of k vectors f,, i = 1,.. ., k, where f, E RE. The quantity

f,(vw) represents the flow of commodity i on edge vw. If the flow of commodity i on edge vw

is oriented in the same direction as edge vw, then fi(vw) is positive, otherwise it is negative.

The signs only serve to indicate the direction of the flows. For each commodity i we require

the conservation constraints:

Z f,(wv) - E f,(vw) = 0 for each node v V {s,,ti}, (2.1)
vvEE V"WEE

Z fi(vw) = d, for v = s,, (2.2)
vwEE

E f,(wv) = di, for v = ti. (2.3)
WVEE

Note that (2.1) and (2.2) imply (2.3). Alternatively, we can define the flow of a commodity

in the following way. Let Pi denote a collection of paths from si to t, in G, and let fi(P) be

a nonnegative value for every path P in Pi that represents the amount of flow carried by path

P. The value of the flow thus defined is ']pep. fi(P), which is the total flow delivered from si

to ti. The amount of flow through an edge vw is

f,(vw)=Z{f,(P) :PEPi and vwEP}.

We will use both formulations as convenient.

We define the value of the total flow on edge vw to be f(vw) = , I f,(vw)1, and say that a

multicommodity flow f in G is feasible if f(vw) <_ u(vw) for all edges vw. (Note that f(vw) is

always non-negative.)

We consider the optimization version of this problem, called the simple concurrent flow

problem, first defined by Shahrokhi and Matula [59]. In this problem the objective is to compute

the maximum possible value z such that there is a feasible multicommodity flow with demands

z • di for 1 < i < k. We call z the throughput of the multicommodity flow. An equivalent

formulation of the concurrent flow problem is to compute the minimum A = 1/z such that

there is a feasible flow with demands d, and capacities A . u(vu,). We shall use the notation

A(vw) to denote the congestion f(vw)/u(vw) of an edge vw E E, X = maxVEE \(vw), and k



2.2. PRELIMINARIES 15

to denote the optimal (minimum) value of V. We can now restate the concurrent flow problem

as follows:

Simple Concurrent Flow Problem (restatement) Given an instance I of the multicom-

modity flow problem, find a flow that satisfies the conservation constraints (2.1)-(2.3) and

minimizes the congestion \.

A multicommodity flow f satisfying the demands di, i = 1,..., k is c-optimal if its conges-

tion A is at most a factor (1 + c) more than the minimum possible value; that is A < (1 + c)A\*.

The approzimation problem associated with the concurrent flow problem is to find an c-optimal

multicommodity flow f. We shall assume implicitly throughout that c is at least inverse poly-

nomial in n and is at most 1. This assumption is without loss of generality. If C> 1, we can run

the algorithm for c = 1. If c'- is greater than any polynomial in n, our algorithms still yield

a correct solution. In this case, however, the running times of our algorithms are somewhat

greater and will be dominated by the time to solve the problem exactly.

We can extend the results in this chapter to the case where the input graph is directed. In

this case we require all edge flows to be non-negative and oriented in the same direction as the

corresponding edges in the input graph. The results in this chapter carry through to this case

with slight notational changes. Henceforth, we focus only on the undirected case.

The general multicommodity flow problem is a natural extension of the simple problem

when each commodity may have more than one source and sink. For each commodity i we

are given an n-dimensional demand vector d4 E ZV, where the jth component d.(vj) denotes

the demand for commodity i at node vi. A negative demand denotes a supply. We require

that the total demand equal the total supply, i.e., F, d,(v) = 0 and we shall use Di to denote

max, {1d,(v)j}. The conservation constraints of equations (2.1)-(2.3) are replaced by the more

general conservation constraints:

E f.(wv)- E fj(vw) = d,(v) i = 1,...,k; v E V. (2.4)
wVEE vwEE

Many of our results can be extended to this slightly more general model, although we shall

not address this issue in this thesis. The main point in introducing this model is to reduce the

number of commodities. We will show that every simple concurrent flow problem is equivalent



16 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

2 V3

4

commodity s t demand
1 V1 V3 1
2 V2 V4  1
3 Vi vs 2
4 V1  v2  I

1 -4 1 1 0 2 -
2 0 -1 0 1 0

Figure 2.2: The original input, the grouped input and a solution to the grouped problem.

to a general concurrent flow problem with at most n commodities.

For a general concurrent flow problem, it may not be possible to reduce the number of com-

modities. To simplify the running time bounds, we will assume that the number of commodities

is polynomial in n. In particular, we will use that log k = O(log n).

We now explain how to convert a simple concurrent flow problem to a general concurrent

flow problem with k* commodities, where k" is the number of distinct sources: we combine

those commodities that share a source. In other words, for each source s we define a demand

vector d, E Zv as follows: for each commodity i with s, = s, we set d.(t1 ) = di; we set

d,(s) = - _ {di : s, = sl; and we set all other demands to zero.

We give an example of combining and uncombining flows in Figures 2.2 and 2.3. In Figure

2.2, the input is a 4 commodity simple concurrent flow problem. Commodities 1,2 and 4 all

have v, as a source. Hence we can combine these 3 commodities into 1 commodity group, group

1. The demand vector for this group appears in the second table. Node v, is a supply node

with 4 units of supply, and hence d(v) = -4. Nodes v2 and v3 have demand 1 and node v5 has



2.2. PRELIMINARIES 17

commodity j I demand symbol
I V1  V3  1
2 V2  V4  1
3 Vi V5 2
4 v1  v2  I

Figure 2.3: The result of ungrouping the solution in Figure 2.2

demand 2. Node v4 , which had no demand in any of the original commodities, has no demind

in the grouped commodity. The second commodity group consists of the original commodity 2.

A solution for this grouped commodity is given in the graph. It is easy to check the demands

for the two commodity groups are satisfied. Figure 2.3 shows how to convert the solution for

the grouped instance in Figure 2.2 into one for the original instance. Commodity group I has

been split into three commodities. The total amount of flow on each edge is still the same and

all the original demands are still satisfied.

Lemma 2.2.1 Consider a simple k-commodity concurrent flow problem and the corresponding

k*-commodity problem defined by combining commodities that share a source.

1. Given the ungrouped problem, the grouped problem can be created in O(kn) time.

2. Any feasible solution to one can be converted to a solution to the other with the same con-

gestion.

3. The conversion of a solution for the k*-commodity grouped problem to one for the k-commodity

ungrouped problem can be done in O(k'nm) time, or in O(k~m log n) time using the dynamic

tree data structure.

Proof: The conversion of an instance of the grouped problem from an ungrouped one can be



18 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

performed, in O(kn) time, by the procedure described above for combining commodities that

share a source. The conversion of a solution of the simple concurrent flow with k commodities

into a solution of the k*-commodity problem is straightforward, we simply add the flows that

share a common source. Assume that we are given a solution to the general concurrent flow

problem with k" commodities. Decompose the flow of each commodity into paths and cycles

and combine the flows on paths that have the same source and sink nodes, disregarding the

cycles. This procedure is known as flow decomposition and it is well known low to compute a

decomposition in O(nm) time (see, for example [3]) and in O(m log n) time using the dynamic

tree data structure. [64] E

The sources and sinks play a symmetric role it the (undirected) problem, and hence k"

in the lemma could have been defined as the number of nodes in any subset that contains

an endpoint of each commodity. While itnding a minimum such node set is NP-complete, we

mention this formulafon because in some cases it leads to an efficiently computable k" that is

smaller than the one defined above.

Except for the few places in this chapter where we explicitly distinguish between simple

and n -., simple concurrent flow problems, all our bounds are for a k-commodity non-simple

co'. Arro ,ow proL.em, and hence they also apply to a 1--commodity simple concurrent flow

problem. L'he only distinction between the two variants will be made in the routine INITIALIZE

and its analysis in Lemma 2.4.2, and in the final analysis of our algorithms in Theorems 2.4.21,

1.23 and 2.4.32.

The main subroutine of our algorithm is a minimum-cost flow computation (of a single com-

modity). We use the following, slightly unconventional definition. An instance of a minimum-

cost flow problem M = (G, u, c, d,) consists of a graph G = (V, E) with edge capacities u E RE,

edge costs c E RE and a demand vector di. The cost C, of a flow fA is EVwEE c(vw) If,(vw)I.

Given a demand vector d,(v), and capacities u, the minimum-cost flow problem is the prob-

lem of finding a flow of minimum cost that satisfies the conservation constraints (2.4) and has

If,(vw)l ,5 u(vw) for each edge vw E E. We denote the value of the minimum-cost flow by

C:. The residual graph of a flow fi, denoted G,, = (V, Ej,) is the directed graph consisting

of the set of edges for which fi(vw) < u(vw) and the reversal of the set of edges for which

f,(vw) > -u(vw). In Section 3.3.3, we will need to work with the linear-programming dual of



2.2. PRELIMINARIES 19

a minimum-cost flow. The dual variables on the nodes are commonly referred to as prices, and

are denoted by p. A price function is a vector p E Rv. The reduced cost of an edge vtv E E is

c(vw) + p(v) - p(w), and -c(vwt) - p(v) + p(w) on reverse edges. Linear programming duality

implies that a flow fi is of minimum cost if and only if there exists a price function p, such

that the reduced cost of the edges in the residual graph of fi are nonnegative (complementary

slackness conditions).

For initialization, we will need to solve maximum flow problems. We use the following,

slightly unconventional definition. An instance of a maximum flow problem /V = (G, u, si, ti)

is a graph G = (V, E) with edge capacities u E RE, and two distinguished nodes, the source s,

and the sink ti. The maximum flow problem is the problem of finding the maximum value di

such that there exists a flow fi E RE that satisfies the conservation constraints (2.1)-(2.3) and

has Ifi(vw)I •_ u(vw) for each edge vw E E.

We will also need to solve a variant of the maximum flow problem that we call the feasible

flow problem. The input to a feasible flow problem F = (G, u, d•) consists of a graph G = (V, E)

with edge capacities u and a demand vector d,. The object is to find a flow f, satisfying the

conservation constraints (2.4) and that has ]f1(vw)I < u(vw) for each edge vw E E. It is well-

known how to convert an instance Y of the feasible flow problem with n nodes and m edges into

an instance M of the maximum flow problem with at most n + 2 nodes and m + 2n edges. Thus

both the maximum flow probiem and the feasible flow problem can be solved by a maximum

flow computation on a graph with O(n) nodes and 0(m) edges.

2.2.1 Optimality Conditions

Linear programming duality can also be used to give a characterization of the optimum solution

for the concurrent flow problem. Let I E RE be a nonnegative length function. For nodes

v, w E V, let distt(v, w) denote the length of the shortest path from v to w in G with respect

to the length function 1. The following theorem is a special case of the linear programming

duality theorem.

Theorem 2.2.2 For a simple multicommodity flow f satisfying the demands di, i = 1,..

and capacities A • u(vw), Vvw E E, and any length function 1,



20 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

A• • t(vw)u(vw) 2!>j t(vw)f(vw)
vw-E" vUEE

- ~ t(vw) I,(tVW)I
i=1 wweE

- ~ 1(P)fP)
i=1 per'.

> distI(si,,i)di. (2.5)

Furthermore, a multicommodity flow f minimizes A if and only if there exists a nonzero length

function I for which the inequalities above all hold with equality.

Theorem 2.2.2 is a characterization of optimality that relates the value of A to the lengths

of the shortest path for each commodity. We shall also use a slightly different characterization,

one that relates the value of A to the costs of minimum-cost flows in appropriately derived

graphs. While these characterizations can be proven to be equivalent, by measuring optimality

in terms of minimum-cost flows, we are able to develop faster algorithms for the general case.

Let I be a nonnegative length function on the edges, f a multicommodity flow, and A

its congestion. Let C, be the cost of the current flow for commodity i, using I as the cost

function, i.e., Ci = EV,•eEf(VW) Ifi(vw)l. For a commodity i, let C,(A) be the value of a

minimum-cost flow f,' satisfying the demands of commodity i, subject to costs I and capacities

A • u(vw), i.e., let f; be a flow that satisfies Jf11(vw)J _ , • u(vw) and minimizes the cost

C;0(A) = vw E E £(vw) If,(vw)1. For brevity we shall sometimes use Ci' to abbreviate C,(,).

The foflowing theorem is a restatement of Theorem 2.2.2.



2.2. PRELIMINARIES 21

Theorem 2.2.3 For a (general) multicommodity flow f satisfying capacities A • u(vw), and a

length function 1,

A 1: £(vw)u(vw) 1 (vw)f(vw)
tvwEE VWEE

k

i=1 vwiEE

k

i=1

Furthermore, a multicommodity flow f minimizes A if and only if there exists a nonzero length

function I for which the inequalities above all hold with equality.

We would like to be able to say that the ratio of the last term and the multiplier of A in

the first term gives a lower bound on the optimal value A*. The analogous statement for the

inequality (2.5) is obvious, because neither of the two terms depend on A. In Theorem 2.2.3

the last term, ',ý=, Ci (A), depends on A. Observe, however, that the minimum cost of a flow

subject to capacity constraints A - u(vw) cannot increase if A increases.

Lemma 2.2.4 Suppose that we have a multicommodity flow satisfying capacities A- u(vw) and
> k

is a length function. Then A* I C,

Another well-known characterization of optimality for a linear program is known as the com-

plementary slackness conditions. One way to formulate these conditions for multicommodity

flow is to formulate them as conditions on edges and individual commodities.

Theorem 2.2.5 A multicommodity flow f has minimum A if and only if there exists a nonzero

length function I such that

1. for each edge vw E E, either t(vw) = 0 or f(vw) = A. tu(vw), and

2. for each commodity i, C, = C(A).



22 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

3 1= 10V

commodiiX s a demand symbol
1 V2  V5 1 --

2 v3  V4  1
3 V1  v5  2

Figure 2.4: An optimal solution

The complementary slackness conditions can also be formulated in terms of conditions on

edges and paths. The following theorem is equivalent to the definition above, but will turn out

to be more useful in the unit capacity case.

Theorem 2.2.6 A multicommodity flow f has minimum \ if and only if there exists a nonzero

length function I such that

1. for each edge vw E E either 1(vw) = 0 or f(vw) = A, and

2. for each commodity i and every path P E Pi with f,(P) > 0 we have t(P) = distl(si,ti).

We illustrate the concepts of this section by giving a length function that demonstrates the

optimality of the flow given in Figure 1.3. In Figure 2.4, we give the flows and length functions.

We first check Theorem 2.2.3. The leftmost term,

,E I(vw)u(vw)= (1.2+ 1.2+1.4+ 1.4+0.3+0.3)=6.
vwEE

The middle terms,

k k

Sl(vw)f(vw)= 1 •j £(vw) IJf(vw)l = ZC = 1 + 1 + 2 + 2 = 6.
VWEE i=1 vwEE i=1



2.3. RELAXED OPTIMALITY CONDITIONS 23

Finally, in order to compute the last term, we need to compute a minimum-cost flow for each

commodity. The value of the minimum-cost flow is equal to the shortest a, - t, path for

commodity i multiplied by the demand of i. So C' = 2. 1, C2 = 0- 1, and C; = 2.2. Summing,

we get 6 and we have shown that at optimality the terms are all equal.

We can also check for optimality using the complementary slackness conditions of Theorem

2.2.5. The first condition is easily verified and the second was verified in the previous paragraph.

Hence we have another "proof" that the flow given in Figure 1.3 is optimal.

2.3 Relaxed Optimality Conditions

The conditions in Theorems 2.2.5 and 2.2.6 describe when a solution is optimal. The goal of

our algorithms, however, is to find a multicommodity flow f and a length function I such that

this lower bound is within a (1 + c) factor of optimal, i.e.,

k

A < (1+ C)A* < (1 + C)ZEC.'(A)/( E t(vw)ts(vw)).
i=1 VwtEE

In this case, we have proved that f is c-optimal, and t is a particular length function that allows

us to verify c-optimality.

Let c > 0 be an error parameter, f a multicommodity flow satisfying capacities A • u(vw),

and t a length function. We say that a commodity i is c-good if

Ci - C,(7() :5 cC, + C A E £(vw)u(vw).
vw -EE

Otherwise, we say that the commodity is c-bad. Intuitively, a commodity is c-good if it is almost

as cheap as the minimum cost possible for that commodity or it is at most a small fraction of

A 'vwEE £(vw)U(VW), the total cost of the network. We use this notion in defining a relaxed

version of the complementary slackness conditions. We define the following relaxed optimality

conditions (with respect to a multicommodity flow f that satisfies capacity constraints A.u(vw),

a length function £ and an error parameter c):



24 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

(R1) For each edge vw E E,

either

(1 + c)f(vw) > A.tU(vw)

or
U(vW)t(vw)5 t"E (xy)u(zy).

CWEE

&

i t-bad i

Typically, complementary slackness conditions are used as a way to check whether a solution

is optimal. We will use the relaxed optimality conditions to check when a solution is t-optimal.

We now show that if these two conditions are satisfied then the gap between the first and last

terms in (2.6) is small. We begin by showing that the gap between the first and second terms

is small.

Lemma 2.3.1 Suppose that flow f and length function I satisfy Relaxed Optimality Condition

R1. Then

A I(vw)u(vw)5 • }Lt (vw)f(vw).
avu'EE It WEE

Proof: Let A denote the set of edges for which (1 + c)f (vw) _ A. u(vw). We can estimate the

sum A t'•,•E £(vw)u(vw), by summing separately over the sets A and EIA, i.e.,

A I (vw)u(vw) = A\ 2: (vw)u(vw) + A\ 1: t(vw)ts(vw).
a#WEE vwEA vwEE/A

Now we bound the first sum using the first part of Relaxed Optimality Condition R1 and

the second sum using the second part of Relaxed Optimality Condition R1. Thus

A t(vw)u(vw) • (1 + 1) E I(vw)f(vw) + A(vw)u(vw)
vwEE vwEA vwEE/A WEE /

:5 (1 + ') Ej I(vw)f (vw) + Am (!E £ (vw)u(vw))
vwEA ( wEE

:E (1 + C) E E(vw)f(vw) + A : t(vw)u(vw).
t'weA vwEE



2.3. RELAXED OPTIMALITY CONDITIONS 25

This chain of inequalities implies that

(1 - C)A I £(vw)u(vw) •_ (1 + C) E 1(vw)f(vw)
*wEE .uuEA

<5 (1 +,E E t(VW)f(VW).
,wEE

We can now bound the gap between the last two terms in (2.6).

Lemma 2.3.2 Suppose that flow f and length function I satisfy Relaxed Optimality Conditions

R1 and R2. Then
k k

•jC, < (1 + 5,)ZC(A).
i--. i=1

Proof: We can bound the sum - C, by considering the contribution from e-good and c-

bad commodities separately. The total contribution from all e-bad commodities is bounded in

Relaxed Optimality Condition 2 by cE "= Ci. The contribution from each c-good commodity

can be bounded using the definition of an e-good commodity, i.e.,

c, <5 (c.-() + T 1(vw),,(vw)
kvwEE

Letting B represent the set of all c-good commodities and summing over both c-good and c-bad

commodities, we get that:

kZ _< . + ECi
'1iEB sfzB

_ (1(c.(,\)+ + I(vw)U(vw) + c ,C.I i ,kvEE I

Combining like terms, we obtain

(1-)'-"C, _< (j-'-'-ZC(A)+ } Z l(vw)u(vw) (2.7)

<_' C, c()+ ) ,X F 1(v,,),(v,,). (2.8)
i=1 uWEE



26 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

Now we can use Lemma 2.3.1 to bound the second term on the righthand side. This yields

(:c), <- .c.(X)+(vw)f(vw) (2.9)

C(iec).A+ C)2 C. (2.10)

Combining like terms,

1 k

A simple algebraic calculation shows that for f < 19, the right side is at most (1 + 5c) I C.(A).

Theorem 2.3.3 Suppose f, t, and c satisfy the relaxed optimality conditions and 4 < 1/9. hen

f is O(,)-optimal, and in particular, A < (1 + 9c)A'.

Proof: Combining Lemma 2.3.1 and 2.3.2,

A (vw)u(vw) < (1 + c)(1+ 5f) ZC:(A).

IWEE i=1

Simple algebra and Lemma 2.2.4 prove the theorem. N

The Unit Capacity Case

For the unit capacity case, we sometimes benefit from using the optimality conditions of Theo-

rem 2.2.2. We can develop similar conditions for relaxed optimality where the optimality is in

terms of paths rather than commodities. The development is similar to that for commodities,

so our presentation shall be more concise.

Let 0 < E < 1/12 be an error parameter, f a multicommodity flow and t a length function.

We say that a path P E Pi for a commodity i is E-short if

A

t(P) - dist,(si,t,) :_ (I(P) + A E t(vw)u(vw).
min{fD, kd,} wEE



2.3. RELAXED OPTIMALITY CONDITIONS 27

and c-long otherwise. The intuition is that a flow path is c-short if it is short in either a relative

or an absolute sense, i.e., it is either almost as short as the shortest possible (si, t,)-path or it is

at most a small fraction of EiEE t(vW)U(VW). We use this notion in defining relaxed optimality

conditions for the unit-capacity case (with respect to a flow f, a length fanction I and an error

parameter c). The new relaxed optimality conditions are condition R1 defined above and the

following variant of condition R2,

k k
(R2') fj f(P)I(P) <_ e•- E E (P)fi (P).

i=1 PET.

P E P.,
P c-bad

Relaxed Optimality Condition R2' says that the amount of flow that is on c-long paths

contributes a small fraction of the sum f " t.

Lemma 2.3.2 bounds the gap between the first and second terms in (2.5). We now proceed

to bound the gap between the last two terms.

Lemma 2.3.4 Suppose f and I and c satisfy the Relaxed Optimality Conditions R1 and R2'.

Then
Jr k

I(P)f,(P) < (1 + 8c) E dist,(s,,t,)d,.
i=1 PEVT, i=1

Proof: We break the sum, F': I"ZPE1, 1(P)f,(P), into two parts; the sum over c-short paths

and the sum over c-long paths. Relaxed optimality condition R2' gives us an upper bound of

c i=1 EPe,. 1(P)fj(P) on the sum over the c-long paths. Taking the definition of an c-short

path and multiplying both sides by f.(P) gives us the following bound that applies for c-short

paths:

(P)P) dist(s, ti)fi(P) + min {D, kd,} Z, VW)VW

1-c D , kj .EE

Let S denote the set of c-short paths. Summing over all c-short paths and using the facts

that r., f,(P) <- X•,p, f,(P) = d,, and (min{D,kd,})- 1 < D- 1 + (kd,)-' we get



28 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

Zfi(P)I(P) S-.5 - (duutL(3d'ti)JA()+f fjP ~vwJU~VW))
PES i1iPer,nS .Dki} YEE

< Zdisti(sa,,t,)d, +64 di 1 ~v--v)1- £ 1~-fc ~ min {D,kd},E (wuv)
i= kf /1 1EE

< Zdistc (si, )d, + Xi-> dj (-L + -i (vw)u(vw)'I
1-c1-c \ D kd,9wweE

Zdisti(sd, ti)di + +' ( 1 )- LvweEtVWt~v

Now observe that there are exactly k commodities and EkId = D, so the last term sums

to exactly F ,VWEEt(vw)u(vw). Thus

Z l .'A)P) S -~ distt(si,,ti)ds + -cA E £(vtv)u(tvw).
I f VWEE

Combining the bounds on the sum over c-long and c-short paths,

k 2c
I(P)f,(P) < j- it(,t,+-A 1: I(vw)u(vw) + c (Pvf,(P)

i=1 per, t VWfE i=1 Per,

Using Lemma 2.3.1 to bound A a.EE (vtv)u(vw) and the equationZXVwEE l(VW)!(VW)

j=1 Eperp t(Pflf(P), we obtain

k (\I(P~jP)\ <j- +d - -E F (P)f, (P) +Z Z (P)f,(P).
" E distd~,ti +dI I

i= EP =1 PEP, i=1 peP.

Combining like terms yields the equation

k k

Simple algebra shows that the second term is less than (1 + 8o F, k disi (s1 , t,)d, if c < 1/ 12.



2.4. ALGORITHMS FOR THE GENERAL CONCURRENT FLOW PROBLEM 29

CONCURRENT(I,C)
f -- INITIALIZE(Z).

while f is not c-optimal
f '- DECONGEST(f, C).

return f

Figure 2.5: Algorithm CONCURRENT

Combining the previous lemma with Lemma 2.3.1 yields the following theorem.

Theorem 2.3.5 Suppose f and t and c satisfy the Relaxed Optimality Conditions R1 and R2'

and c < 1/12. Then f is c-optimal, i.e., A is at most a factor (1 + 12c) more than the minimum

possible.

Proof: Combining Lemma 2.3.1 with Lemma 2.3.4 gives that

1 (VW)u(VW)</ (I + 8c)(1 + c) \
A £(vuw) - ( i ~ E- ) disti(si,ti)ds.

Simple algebra completes the proof. U

The remainder of this chapter focuses on algorithms that achieve the various relaxed opti-

mality conditions.

2.4 Algorithms for the General Concurrent Flow Problem

In this section we give an algorithm, CONCURRENT, for approximately solving the general

concurrent flow problem. In Section 2.4.1, we will bound the time needed in terms of the

number of minimum-cost flow computations. For simplicity of presentation, throughout this

section we shall use a model of computation that allows the use of exact arithmetic on real

numbers and provides exponentiation as a single step. In Section 2.4.2 we will show how to

modify our algorithms to work in the standard RAM model. The question of which minimum-

cost flow algorithm to use is deferred to Section 2.4.3, in which we show how several different

minimum-cost flow algorithms can be used, each of which leads to a different running time.



30 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

2.4.1 Solving Concurrent Flow Problems

In this section, we give approximation algorithms for the general concurrent flow problem.

We give two algorithms, CONCURRENT and SCALINGCONCURRENT. The former is the basic

algorithm on which we will concentrate on for most of this section. The latter is an algorithm

that employs a technique which we call c-scaling and is best when e = o(1). We defer our

discussion of SCALINGCONCURRENT until the end of this section.

We begin with a high level description of our main algorithm CONCURRENT, which appears

in Figure 2.5. Algorithm CONCURRENT takes as input an instance I of the concurrent flow

problem and an error parameter c, c < -, and returns an 9c-optimal concurrent flow. The

algorithm first calls a procedure INITIALIZE which, given an instance of the concurrent flow

problem, returns a 2k-optimal flow. The remainder of the algorithm consists of a sequence of

calls to a procedure called DECONGEST. DECONGEST takes as input a flow f that has congestion

A0 and an error parameter c and returns a flow which is either 9c-optimal or has congestion at

most A•/2.

We begin our analysis by bounding the running time of CONCURRENT in terms of the

running time of INITIALIZE and DECONGEST.

Lemma 2.4.1 Let T, = TI(I) be the running time of procedure INITIALIZE, a procedure that

returns a 2k-optimal flow. Let TD = TD(Z) be the running time of procedure DECONGEST, a

procedure that either returns a 9c-optimal flow or decreases A by a factor of 2. Then, given an

instance I of a concurrent flow problem, algorithm CONCURRENT finds an c-optimal solution in

O(T, + TD log k) time.

Proof: We first call procedure INITIALIZE to find an initial solution that is 2k-optimal, i.e., one

for which A < 2kA'. Each call to DECONGEST, except for the final one, decreases A by a factor

of 2 and we continue to call DECONGEST until A•< (1 + 9c)A'. Thus the number of iterations

is at most the logarithm of the ratio of the initial and final values, or

log 2kA )= O(logk).

GU



2.4. ALGORITHMS FOR THE GENERAL CONCURRENT FLOW PROBLEM 31

INITIALIZE(I, c)

for i= 1...k
if commodity i is simple
then

Compute g,, a maximum flow from si to t, in instance A = (G, u,a, ti).
() fi~vw) ,- g,(vw) . (dI, il) Vvwo E E.

else
A l w .. . .j-- ;U A h ig h , •, n D i.

while (Ahigh - Ao1ow) > 'Di

Amid 4- (Ahigh - A10,,)/2.
u'(vw) +- U(vw) . Amid VVW E E.
if there is a feasible flow in instance F = (G, u', d1)
then

Ahigh A' Amid

else
Alow- Amid

Let Ai.- Ahigh.
u'(vw) -- u(vw). A,• Vvw E E.

Let f, be a feasible flow in instance F = (G, u',d,).
return f

Figure 2.6: Procedure INITIALIZE

In the remainder of this section we shall describe how to implement the various parts of

algorithm CONCURRENT. First, we will describe procedure INITIALIZE, which finds a "good"

initial solution to the given concurrent flow problem. Then, we will describe procedure DECON-

GEST, which takes a flow with congestion A and produces a new flow that is either 9c-optimal

or has congestion at most A/2.

Finding an Initial Solution

This section describes procedure INITIALIZE, which takes as input an instance of the concurrent

flow problem I and outputs a flow which is 2k-optimal. See Figure 2.6. The main idea is that

we separately route each commodity i in a good way. The algorithm is broken into two -eases.

If a commodity i is simple then we find a maximum flow of value IgI from s, to t4 and then

scale the flow on each edge by di/Igi. If a commodity is not simple, then a series of maximum

flow computations must be performed. We perform a binary search over the range of possible

values of A, and at each iteration test whether there exists a flow with congestion Aj. In either



32 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

case, the flow found for commodity i has congestion O(A'). Combiniug all the commodities

yields a flow with congestion O(kA°).

Lemma 2.4.2 Let TMF = TMF(Ar) be the time to compute a maximum flow on instance r =

(G, u, a, t). Then procedure INITIALIZE finds a 2k-optimal multicommodity flow satisfying demands

in O(klog(nU)TMF) time. Given a simple multicommodity flow problem, INITIALIZE finds a 2k-

optimal multicommodity flow satisfying demands in 0(kTMF) time.

Proof: For each i = 1,..., k, INITIALIZE finds a flow f, for the one-commodity concurrent flow

problem consisting solely of commodity i. Let A, be the congestion of flow fi and let A! be the

minimum possible value of A,. Clearly for each i, A* < A*. Assume that INITIALIZE finds a flow

with Ai < 2A• for each commodity i. Combining the flows for all commodities yields a flow

with congestion
k k k

J Aj 2A: < 2A- = 2kA\.
i1 i=1 j=1

We now show, that for each i, INITIALIZE actually finds such a flow.

Consider first the case when commodity i has a single source and a single sink. The algorithm

computes gi, a maximum flow for instance K" = (G, u, s, t). Let IgiI be the value of this flow.

Then by the maximum-flow minimum-cut theorem [29, 14], there exists a cut with total capacity

Ig9I. It is easy to see that the smallest amount by which we can multiply the capacity of the cut

and have a flow satisfying demands di, is d,/Igil. Therefore, A* = d,/Igi. Further, if we scale

the value of the flow on each edge by d,/Igi,, as in Line (*), we now have a flow that satisfies

demands and has congestion A, = A*.

Now consider the case when a commodity is not simple. A single maximum flow computation

no longer suffices. However, for a given value of A,, say Amid, it is possible to check whether

there is a feasible flow with congestion Amid. To do so, we multiply each edge capacity by Amid

and then see if there exists a feasible flow in instance Y = (G, u. ,Amid, d,). This computation

can be carried out via a maximum flow computation in a graph with 0(n) nodes and 0(m)

edges (see, for example, [38]). To find a good value of A,, we perform binary search over the

range of possible A,. The maximum possible value of A, is no more than the maximum edge

flow divided by the minimum edge capacity. The maximum edge flow is no more than nDj,

the total demand for commodity i. The minimum edge capacity is 1, and hence A,, _ nD,.



2.4. ALGORITHMS FOR THE GENERAL CONCURRENT FLOW PROBLEM 33

The total amount of flow in the network is D, and hence some edge must have at least Dn/m

flow. The capacities are bounded by U, and hence the minimum possible value \j attains is

Dj/(mU). Each iteration of the while loop halves the range, aid hence in

o (D,/( u)) = O(log(nU))

iterations A\ is within Di/(mU) of A\. When we stop we have a flow with congestion at most

A' + D,/(mU) • 2A,! of optimal. U

Rerouting Flow

Now, we show how, given a flow, we can iteratively reroute commodities in order to produce a

new flow that is closer to optimality. We give a procedure DECONGEST which takes a flow f

with congestion A0 and produces a new flow that is either 9c-optimal or has congestion at most

\0/2. DECONGEST consists of a series of iterations of a while loop. We will analyze DECONGEST

by first bounding the number of iterations of the while loop and then bounding the time for one

iteration of this while loop. In the remainder of this section, when we use the term iteration

we refer to an iteration of this while loop.

Recall that a commodity is called &-bad if its cost is too high. The basic idea is that

each iteration of DECONGEST reroutes an appropriately chosen fraction of the flow of an c-bad

commodity onto the edges of a minimum-cost flow associated with this commodity (as described

below), in order to reduce congestion. We use a length function £(vw) = e0'('w)/u(vw), where

the value of a will be specified later. This length function has the property that the length of an

edge vw is a function of the congestion, i.e., the fraction (possibly greater than 1) of the capacity

of that edge that is being used. Intuitively, by using lengths as costs in the computation of the

minimum-cost flow, we are penalizing edges with high congestion.

One of the important properties of this particular length function is that at the beginning of

procedure DECONGEST, we can choose a so that Relaxed Optimality Condition R1 is satisfied

and remains satisfied through the execution of procedure DECONGEST. The act of rerouting

flow gradually enforces Relaxed Optimality Condition R2. When both conditions are satis-

fied, Theorem 2.3.5 can be used to infer that f is 0(c)-optimal. Alternatively, DECONGEST



34 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

DECONGEST(f, C)

A0 - A; a -- 2(1 + 0)A0- 1 C- ln(mc-1 )
while A > A0/2 and we have not detected that f is 9t-optimal

OF -4-- .
For each edge vw, t(vw) +- e

(*) Choose a commodity i as a candidate for rerouting.
if commodity i is c-bad
then

Formulate an auxiliary minimum-cost flow instance M - (G, A . u, 1, d.).
Compute f,* a minimum-cost flow for M.
For all vw E E, f,(vw) - (1 - ao)f(vw) + aJf(vw).

return f

Figure 2.7: Procedure DECONGEST

terminates if A decreases by more than a factor of 2.

More formally, procedure DECONGEST (see Figure 2.7) takes as input a multicommodity

flow f with congestion A0, where f satisfies the demands, and an error parameter E. In each

iteration, we first choose an c-bad commodity i and formulate an auxiliary minimum-cost flow

instance M4 = (G, A. iu, t, di). The demand of each node v in the auxiliary problem is equal

to di(v), and the desired flow f,*(vw) is constrained to be between -A. u(vw) and A . u(vw),

where A is the current congestion. The objective is to minimize C•(A) = -,E(vw) Jf*(vw)I.

Given an optimal solution to this problem, we reroute a fraction or = of the flow f, onto the

edges of fi" by setting f,(vw) -- (1 - a)fi(vw) + af*(vw), recompute the length function, and

repeat. Upon termination, DECONGEST returns an improved flow f that is either 9c-optimal

or has congestion A < A0 /2.

An example of an iteration of DECONGEST appears in Figures 2.8, 2.9, and 2.10. This

example may help provide intuition before proceeding. In Figure 2.8 we have the same flow

as in Figure 1.2. In order to highlight the main ideas without using large numbers, we set the

values of a and a somewhat arbitrarily in this example. The algorithm needs to find an c-bad

commodity. In order to do so, we first compute the cost of each commodity. This calculation

is carried out in the bottom of the figure. Next, we need to compute minimum-cost flows

for each commodity. In the example we compute a minimum-cost flow only for commodity 3.

The minimum-cost flow problem and its solution are presented in Figure 2.9. We see that the

cost of the minimum-cost flow for commodity 3 is much less than the cost of the current flow



2.4. ALGORITHMS FOR THE GENERAL CONCURRENT FLOW PROBLEM 35

1-2048

3 1=1/3 '3 1=16/3 1= 04 V

4 -

e4,-41=2
V2 - -- -- - -- - -- - -- - - - - - - V4 -

1--2

commodity j t demand svmbol1 V2 Y5 I - -
2 V3  V4  1
3 V1 VS 2

a•--e121.2 I2 212

2
g avw v) e I2m)u

U(vw) u(vw)

Ci= II(vwll(vw)
vW

C,= 1(2)+ 1(2) = 4
C2 = 1(16/3) f 16/3
C3 = 2(2048) + 2(2048) f 8196

Figure 2.8: Flows, edge lengths and costs of the current flows



36 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

surfce

Figure 2.9: A minimum-cost flow for commodity 3

1 V2  V3 1 --
2 v3  -4 1
3 2 2 -

C1 = 1(16)+ 1(16) = 32
C2 = 1(16/3) = 16/3
C3 = 1(32) + 1(32) +

1(16/3)+1(16)+1(16) = 304/3

Figure 2.10: The situation after rerouting



2.4. ALGORITHMS FOR THE GENERAL CONCURRENT FLOW PROBLEM 37

for commodity 3. We could verify that commodity 3 is indeed, c-bad, and hence we should

reroute it. Figure 2.10 shows the result of rerouting a = I of the flow of commodity 3 onto the

edges of the minimum-cost flow for commodity 3. We have also shown the edge lengths and

commodity costs. Observe that the cost of commodity 3 has decreased significantly. Also note

that although we did not reroute commodity 1, its cost has increased, because commodity 1 is

using some of the same edges as commodity 3. This example demonstrates why multicommodity

flow problems are difficult: rerouting the flow of one commodity in a better way may result in

the flow of another commodity being routed in a worse way.

We now proceed with the analysis. Recall that if Relaxed Optimality Conditions R1 and R2

are satisfied, then the current flow is 9c-optimal. We will first show that R1 is always satisfied.

In particular, we now show that if we set a = 2(1 + c)Ao-1-l in(mc1) at the beginning of a

call to DECONGEST, then Relaxed Optimality Condition Ri is satisfied throughout that call.

Lemma 2.4.3 If f is a multicommodity flow that satisfies demands and a > (1Ic)- 1 -1 ln(mC1 ),

then f and length function e(vw) = ea•(vw)/u(vw) satisfy Relaxed Optimality Condition R1.

Proof: We show that if an edge v'w' violates the first part of Relaxed Optimality Condition

R1 then it must satisfy the second part. If other words if

A.u(v'w') > (1 + C)f(v'w'), (2.11)

then

MvwEE

We can use (2.11) to upper bound the length of edge v'w',

t(V'w') = e'I(V'W)1u(V'u')IU(vV) •<e*I(l+'Iu(vIwl).

Let v'w" be an edge such that A(v'w*) = A and hence u(v'w*)t(v'w*) = e*a. Then

ZCE >(vw)u(vw) u(vw)f(vw) e =_=

u(v'w')1(v'w') - e- (e+() e



38 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

Now if we plug the lower bound on a into e*A(1-(/t)), we see that

e*%(e/('+-)) = e 2(1+)A-#-'i(m(-')A(e/(1+t)) > eln(me-) ->

where the penultimate inequality follows by canceling terms. U

Corollary 2.4.4 Relaxed Optimality Condition RI is always satisfied throughout a call to proce-

dure DECONGEST.

Proof: At the beginning of procedure DECONGEST, a is set equal to 2(1 + c)A0- 1 -I ln(me-")

and throughout DECONGEST A > X0/2 and hence \- _> X- 1/2. Therefore a > (l+c)-l- 1 ln(mc- 1)

throughout. N

We have just seen that Relaxed Optimality Condition R1 is always satisfied. By the con-

trapositive of Theorem 2.3.3, if the current flow is not c-optimal, then Relaxed Optimality

Condition R2 must be violated. The key to showing the efficiency of our algorithm will be

to show that when R2 is not satisfied, then one iteration of DECONGEST makes "progress."

Although the overall goal of our algorithm is to make progress by decreasing the congestion

A, each iteration of our algorithm need not actually decrease A. In order to measure progress

of our algorithm, we introduce a potential function 4 = f(u, f, I). We will specify a set of

conditions on this potential function that will suffice to derive a good bound on the number

of iterations of procedure DECONGEST. We will then give a particular potential function and

show that it meets these criterion.

Notice that the termination condition of the while loop is "A > A0/2 and we have not

detected that f is 9c-optimal." It is trivial to detect when A < \0/2, and hence we can assume

that as soon as A \0 A/2, the call to DECONGEST terminates. To check whether f is 9c-optimal

is not as easy and in fact, if not done carefully, can dominate the running time of DECONGEST.

For ease of presentation, we assume, for now, that as soon as the condition of the while loop in

DECONGEST is not satisfied, the algorithm detects it. In other words, at the beginning of each

iteration, the current flow f is not 9c-optimal. In particular, since Relaxed Optimality Condition

RI is always satisfied, at the beginning of each iteration Relaxed Optimality Condition R2 is

not satisfied. For the deterministic algorithms, at the beginning of each iteration, R2 actually

is not satisfied whereas for the randomized algorithms, R2 may be satisfied at the beginning of



2.4. ALGORITHMS FOR THE GENERAL CONCURRENT FLOW PROBLEM 39

an iteration. In either case, we will eventually show how to remove this assumption.

Let X0 be congestion of the initial flow passed to DECONGEST. Let f0..., fP be the sequence

of flows at the beginning of each iteration of DECONGEST. We call an iteration j productive if

the commodity i chosen on line (*) of DECONGEST is c-bad and unproductive otherwise.

We now state a trivial lemma which captures the different factors that affect the running

time of an implementation of DECONGEST.

Lemma 2.4.5 For a call to DECONGEST, let Ip be the number of productive iterations and Iv

be the number of unproductive iterations. Let Tp be the time spent in one productive iteration,

and TV be the time spent in one unproductive iteration. Assume that the procedure terminates as

soon as f is 9e-optimal. Then the running time of DECONGEST is

O(IpTP + IuTu). (2.12)

In most cases, the dominant term is IpTp, the time spent in productive iterations. We

proceed to bound Ip first.

Let 0,...,0 be the values that potential function 0 takes on during successive iterations.

We call a potential function $ useful if throughout a call to procedure DECONGEST it satisfies

the following four conditions:

U1) o _< MCo,0

U2) V, > e')°/ 2

U3) If iteration j is unproductive then 0, = $I+, j = 0,.. .,p- 1.

U4) If iteration j is productive then 0j - V+1 = n(L2), 0,.. -,p- 1.

Note that the existence of a useful potential function actually implies something about the

performance of DECONGEST.

We now show that if a potential function is useful, then we can establish a bound on the

number of productive iterations on the while loop during one call to DECONGEST.



40 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

Lemma 2.4.6 Let 4 be a useful potential function. Then procedure DECONGEST terminates

after O(C-Sklogn) productive iterations. If the initial flow is 0(r)-optimal, then DECONGEST

terminates after O(r-k log n) productive iterations.

Proof: First we bound the number of times # can be reduced by a factor of e throughout a cal

to DECONGEST. Since 0 is useful, initially, to _< mea•o and in the last iteration OP > e*A'/1.

By U3 and U4, 0 never increases. Thus the number of times * can decrease by a constant

factor is just the logarithm of the ratio of the initial and final values of 9. w, -h ir

log me*---;) = 0((aAo + log m) = 0(oxAo).

The last equality follows by plugging in the value of a specified in DECONGEST.

By U4, each productive iteration results in a reduction in 4 of fl(! 4'). Since 1 - z < e-1,

it follows that every 0(k-t2 ) iterations reduce 4 by at least a factor of e.

Multiplying the number of productive iterations it takes to reduce 4 by a factor of e by the

number of times f can be reduced by a factor of e in order to decrease by a constant factor,

we see that DECONGEST executes 0(aAokC 2) productive iterations. Plugging in the value of

a, we get that the number of productive iterations is

0(a'\okt 2) = 0(t- 'l\'n(nc-1 )AokC-2) = 0 (C 3 T n(nE-1)).
o~~~o' 00==

We have assumed that c is at least inverse polynomial in n, and we maintain that A > Ao/2, so

the number of productive iterations is in fact O(C-3 k log n).

If the initial flow is 0(E)-optimal then we know that A\ > Ao/(l + 0(c)), so throughout

DECONGEST, A never goes below A0/(l + 0(c)). Thus, we have the tighter bound on the

possible range of the potential function of ea(+°O'))'A° < 6' < me"O. So to decrease the

potential function by a constant factor takes

0 (log ( eX 0 (t,\° log M)

rd(iitrion. onting =aoe ) w gt at + n gm )

productive iterations. Continuing as above, we get that the number of iterations is 0(clk log n).



2.4. ALGORITHMS FOR THE GENERAL CONCURRENT FLOW PROBLEM 41

We use the particular potential function * = X.JeE u(vw)t(vw). To complete the proof

that DECONGEST terminates after a small number of productive iterations, we need to show

that 4 is useful. We begin by showing that it satisfies the first three conditions in the definition

of useful.

Lemma 2.4.7 Let P = "VEE u(vw)1(vw). Then throughout one call to DECONGEST, U1 and

U2, U3 are satisfied.

Proof: Initially for each edge vw, A(vw) _ A0, thus

u(vw)t(vw) = *°(vw) < e0A°,

and

0= u(vw)f(vw) • Z e'x < me*0.
vwEE VwEE

At the beginning of the last iteration, DECONGEST has not terminated, and therefore X > \ 0/2.

Thus here must be at least one edge v'w' for which A(v'w') 2 A0/2. Since e(vw) and u(vw) are

always non-negative, u(vw)e(vw) is non-negative for each edge vw and hence

4= Z t(vw)t(vw) > U(V'w')t(v'w') > eao./ 2.
vwEE

Finally, if iteration j is non-productive, then commodity i is not c-bad and no rerouting takes

place. Hence, neither the flow nor the length function changes and 41 remains unchanged. U

The following lemma establishes that the potential function f = &EvE u(vw)t(vw) satisfies

U4. This lemma is the heart of the analysis of DECONGEST.

Lemma 2.4.8 Let c < 1 and < a < I- . Let j be a productive iteration and let i

be an c-bad commodity, and let f. be a minimum-cost flow for this commodity as computed in

DECONGEST. Let the new flow for commodity i be defined by f,(vw) -- (1 -o)f,(vw)+af.(vw).

Then, V4 - • > f?(IL-+).

Proof: Denote by £(vw) and e'(vw) the length of edge vw before and after rerouting, respec-

tively. Let 6(vw) denote the increase in flow on vw due to rerouting. Recall that, after rerout-

ing, the flow of the rerouted commodity i on vw is 1(1 - j)f,(vw) + afjo(vw)I, and hence



42 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

W6vw)I :5 t-If*(vw) - f,(vw)l :5 o(,(JAvt)J + 1f*(vw)I). Moreover, since both fj and f," have

congestion at most A, 16(vw)I 5 2aAu(vw).

By definition of the length function,

£'(vw) = e((W+(')1(W1(W a(-/MV)'/(U)

where 'a=ct(vw)/u(vw). Observe that Jill :5 2aua\ < c/4 < 1/4. Using the Taylor series, we

see that ji~l:5 e/4 -< 1/4 implies that for all z, e'" -<ez + vie + ~ilre'. Therefore, we have:

t'(vw) :5 I(vw) + II(VW) + jI'7I(vw)

< 0~lf*(V~l- If,(VW)D I ) +c'ra(If,(vw)I + fiP(VW)I1V) .
U(vw) £(t)+2u(vw) £v)

We use this bound to give a lower bound on the decrease in the potential function.

- $i+1 E (e(vw) - £'(vw))ts(vw)
VuiEE

aa cw(If,(vw)I - 1fi(vw)I)f(vw) - taar F,(If,(vw)I + If,('VW)Dt(tW).

By the definitions of C, and C*(A\), C, = F,,wEE f,(vw) It(vw)I and Cj*(A) = &wVEE fi(VW) If(VW)I,
hence we can rewrit- the last bound as

V 4+1 > Qa~(C - C:-(A)) - cuaj(Ci + C*(A\)).

Since C,' (A) :5 C,, we can bound the last term by aao&,. We can use the definition of an C-bad

commodity to establish a lower bound on the C, - C,*'(A) that appears in the first term on the

righthand side. Plugging in we get

40- Vp+' > aack(C - C*(A)) - ackOcC 2! cao' (cC + CA EVW I(vw)ts(vw)) - ~ciu = 2C

(2.13)



2.4. ALGORITHMS FOR THE GENERAL CONCURRENT FLOW PROBLEM 43

Plugging in the value of a from the statement of the lemma, we. get that

Combining Lemmas 2.4.6, 2.4.7, and 2.4.8 we get the following lemma:

Lemma 2.4.9 Assume that as soon as f is 9c-optimal, DECONGEST terminates. Then Ip =

O(caklog n) if the initial flow is arbitrary and O(C-2 k log n) if the initial flow is 0(c)-optimal.

This bound on Ip holds for both the randomized and the deterministic version of DECON-

GEST.

Implementations of DECONGEST

We now give two different implementations of DECONGEST, a deterministic implementation

and a more efficient randomized one. For each one, we will explain the algorithm and then

bound Iu, Tp, and Tu. We will also discuss the issue of detecting when f is 9c-optimal. For all

variations, the only computation-intensive part of an iteration of DECONGEST, be it productive

or unproductive, is finding an c-bad commodity and computing minimum-cost flows. All the

rest can be done in 0(m) time. Thus, we will concentrate on finding an c-bad commodity

and computing minimum-cozt flows. Throughout this section, we treat the minimum-cost flow

subroutine as a black box, and shall discuss its implementation later.

Before beginning, we discuss how to perform a termination check in all variants of the

algorithm.

Lemma 2.4.10 Let TMCF = TMCF(M) be the time to compute a minimum cost flow for instance

M. Then given a flow f, we can determine if f is 9c-optimal in O(k(TMcF)) time.

Proof: In order to detect termination, we can compare A to

k

C'(,\)/( F, 1(VW)u(VW)), (2.14)
i=1 VWEE



44 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

the lower bound given by Lemma 2.2.4. The numerator of (2.14) can be computed by computing

k minimum-cost flows. The denominator can be computed in O(m) time. U

Now we describe the straightforward deterministic implementation. The simplest way to

find an t-bad commodity is to compute the costs C, = Z"u'EE '(vw) IJf(vw)I and the costs of the

minimum-cost flows C, and compare them to see if commodity i is e-bad. In the worst case we

need to check all k commodities. Computing the cost of one commodity takes O(m) time, and

therefore the costs of all commodities can be computed in O(km) time. Hence, an iteration can

be implemented in the time it takes to perform k minimum-cost flow computations plus O(km)

additional time. After each iteration, we can perform a termination check. By Lemma 2.4.10,

the time for a termination check is the same as the time for an iteration, and hence including

the time spent performing termination checks does not increase the asymptotic running time.

Further, since we perform a termination check after each iteration, we claim that every iteration

is productive. At the start of an iteration, the flow is not 9c-optimal, and by Lemma 2.4.3,

Relaxed Optimality Condition R1 is always satisfied. Thus by the contrapositive of Theorem

2.3.3, Relaxed Optimality Condition R2 must not hold and there must be an f-bad commodity.

Since in each iteration, we check each commodity to see if it is c-bad, if one exists, we will find

it.

We summarize this discussion in the following lemma:

Lemma 2.4.11 Let TMCF = TMCF(M) be the time to compute a minimum cost flow for instance

M. Procedure DECONGEST can be implemented to run in O(c•k 2 log n(TMcF)) time. If the initial

flow is 0(c)-optimal, DECONGEST can be implemented to run in 0(c-2k2 log n(TMCF)) time.

Proof: By the above discussion, Tp = O(kTMcF), Iu = 0, and as soon as f is 9E-optimal,

DECONGEST terminates. Plugging these bounds and the boLnds of Lemma 2.4.6 into equation

(2.12) yields the lemma. N

Deterministically, it seems necessary to know the values of the k minimum-cost flows in each

iteration. However, by using a simple randomized strategy, we can show that it is necessary

to compute only expected 0(cl) minimum-cost flows in each iteration. When C' = o(k), for

example when c is a fixed constant, this randomized strategy leads to faster algorithms.

We begin by giving the strategy:



2.4. ALGORITHMS FOR THE GENERAL CONCURRENT FLOW PROBLEM 45

Randomized Strategy 1: When choosing a commodity to rproute, rcoose a commodity

with probability proportional to its cost, i.e., Pr[commodity i is chosen] = CS/C, where C

•k= 1 C.

Lemma 2.4.12 Suppose f is not 9c-optimal and a commodity i is chosen at random using

Randomized Strategy 1. Then Pr[i is c-bad] > c. If we implement DECONGEST using Randomized

Strategy I then E[Iu] = O(c IIp), and we can amortize the running times so that Tu = O(TMcF+

k) and Tp = O(TMcF, + mnk).

Proof: Let C = 1 Cj. If the flow is not 9c-optimal, then it must be the case that R2 is

violated, i.e.,

C> (2.15)
i c-bad

We choose a commodity i with probability proportional to its cost, i.e., with probability CQC.

The probability that a commodity chosen in this manner is bad is just

Pr[i is c-bad] = • C,/C > (C/C =
j c-bad

where the inequality follows from (2.15). Thus with probability at least c, we have chosen an

c-bad commodity.

In each iteration, the probability of finding an c-bad commodity is at least c, thus in ex-

pected O(c•) iterations, we will find such a commodity. The iteration in which we find an

c-bad commodity is productive while the rest are unproductive, so E[Iu] = O(c1Ip). Consider

a sequence of unproductive iterations followed by one productive iteration. At the beginning

of this sequence, we compute, in O(km' time, the values C, for i = 1,...,k. We then exe-

cute a sequence of unproductive iterations. Each involves choosing a commodity, which can

be performed in 0(k) time, and then computing one minimum-cost flow. Thus each one of

these iterations takes O(TMCF + k) time. Finally, we actually execute a productive iteration in

O(TMCF + k) time. We can charge the computation of the commodity costs to this productive

iteration, so Tp = O(mk + TMCF).E

Corollary 2.4.13 Let TMCF = TMCF(M) be the time to compute a minimum cost flow for



46 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

instance M and assume that DECONGEST terminates as soon as f is 9f-optimal. Then Procedure

DECONGEST can be implemented to run in expected O(C-3 k log n(c-ITMcF + c Ik + mk)) time. If

the initial flow is 0(E)-optimal, in can be implemented to run in expected 0(1c 2 klog n(C-1 TMCF +

Clk + ink)) time.

Proof: Plug the values from Lemma 2.4.12 and 2.4.6 into (2.12). E

Observe that if k < n (this is the case when Lemma 2.2.1 is applied) the time to compute

the cost of all current flows is dominated by the time to compute a mininu ro-t flow, and

the mk and c ' terms disappear from the bound in Corollary 2.4.13. On the other hana, if k is

large, then the dominant step may be computing the costs and choosing a commodity. In this

case, we can reduce the time by using a somewhat more involved strategy:

Randomized Strategy 2: Pick an edge with probability proportional to the product of

the length of the edge and the flow through this edge. Let the chosen edge be vw. Then

choose a commodity with probability proportional its flow on edge vw. In other words, let

F = •,WE f(vW)f(vw). Choose an edge vw E E with Pr[vw is chosen] = l(vw)f(vw)/F.

Choose a commodity i with Pr[i is chosen] = IJf(vw)l/f(vw).

We now show that this strategy still chooses commodity i with probability proportional to

its cost and reduces the time for random selection from O(km) to the minimum of 0(m+k) and

O(m log k). By doing so, we are actually picking a commodity with probability proportional to

its cost, without ever explicitly computing these costs.

Lemma 2.4.14 Suppose a commodity i is chosen according to Randomized Strategy 2. Then

Pr[i is E-bad] j> f. Assume that we implement DECONGEST using Randomized Strategy 2 and

terminate as soon as f is 9-optimal. Then, for this strategy E[Iu] = 0(clIlp).



2.4. ALGORITHMS FOR THE GENERAL CONCURRENT FLOW PROBLEM 47

Proof: Let F = ;F.eE f(vw)t(vw). The event that i is chosen is just the sum of m independent

events, one for each edge. Thus

Pr[i is chosen] = j Pr[vw is chosen] Pr[i is chosen I vw is chosen]
iwEE

t(vw)f(vw) If,(vw)I

vwEE F f(vw)

= Ifi(vw)It(Vw)
vwEE

But F,,wE If,(vw)It(vw) = C. and F = _'=l C,, so we are choosing a commodity with

exactly the same probability as in Randomized Strategy 1. The lemma follows. U

We now give two ways to implement Randomized Strategy 2. The first is the straightforward

one in which we pick an edge and then pick a commodity going through that edge. In each

iteration, we first choose a random number x E [0, 1] and then find the smallest i for which

=a z(vw)f(vw) > z. (2.16)
a = F -

This procedure gives us an edge with the right probability. Given the value of ai- 1, a, can be

computed in 0(1) time, and thus a,,..., am can be computed in 0(m) time. Analogously, we

can choose a commodity using this edge vw by choosing a random number Y E [0, 1] and then

finding the smallest i for which

bi =E ( > (2.17)

j= f(vw) -

The bi, i = 1,...,k can be computed in 0(k) time. Once we have chosen a commodity, a

minimum-cost flow is computed in O(TMCF) time. If it turns out that the commodity is c-bad,

it is rerouted. Thus we have shown:

Lemma 2.4.15 An iteration of DECONGEST can be implemented using Randomized Strategy 2

so that Tu = Tp = O(TMCF + k + m) = O(TMCF + k).

This yields the following corollary:



48 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

Corollary 2.4.16 Let TMCF = TMCF(M) be the time to compute a minimum cost flow for

instance Mand assume that DECONGEST terminates as soon as f is 9c-optimal. Then Procedure

DECONGEST can be implemented to run in expected O(C- 4klogn(TNcF + m + k)) time. If the

initial flow is 0(c)-optimal, in can be implemented to run in expected O(Cek log n(TMcF + m + k))

time.

Proof: Plug the values from Lemmas 2.4.15 and 2.4.6 into (2.12). E

Alternatively, we can use slightly more involved data structures and derive bounds that

have depend on log k rather than k.

Lemma 2.4.17 An iteration of DECONGEST can be implemented using Randomized Strategy 2

so that Tu = O(TMcF +logk + m) = O(TMcF + log k) and Tp = O(TMcF + mlogk).

Proof: In the previous strategy, at each iteration, given a random value y, we had to check

(2.17) for all k commodities. To perform this computation more efficiently, we can store the

values If,(vw)I/f(vw) in a balanced binary tree. There is one tree for each edge vw. In tree vw,

leaf i, i = 1,..., k contains the value If,(vw)I/f(vw). Each internal node of the tree contains

the sum of the leaf values in its subtree. It's well known that given such a data structure,

the leftmost leaf satisfying (2.17) can be found in 0(logk) time. In order to maintain these

data structures, we must update the appropriate trees each time a flow value changes. The

only changes occur when flow is rerouted and each rerouting only changes the value of the flow

for one commodity on at most m edges. Therefore, the updates associated with one routing

step can be accomplished in O(mlogk) time. Each unproductive iteration performs one tree

search and one minimum-cost flow, while each productive iteration performs one tree search,

one minimum-cost flow and one rerouting. The lemma follows. U

We can summarize this in the following corollary:

Corollary 2.4.18 Let TMCF be the time to compute a minimum-cost flow and assume that DE-

CONGEST terminates as soon as f is 9E-optimal. Then Procedure DECONGEST can be implemented

to run in expected O(C-4klog n(TMCF + mlogk)) time. If the initial flow is 0(c)-optimal, in can

be implemented to run in expected O(C- 3k log n(TMcF + mlog k)) time.

Proof: Plug the values from Lemmas 2.4.17 and 2.4.6 into (2.12). N



2.4. ALGORITHMS FOR THE GENERAL CONCURRENT FLOW PROBLEM 49

In the analysis above, we have assumed that the algorithm terminates as soon as the flow is

9c-optimal. In order to guarantee this condition, we would have to perform a check after each

iteration. However, if we did perform a check after each iteration, we would spend more time

performing checks than rerouting flow. If the termination checks are not to dominate, we need

a strategy that checks for termination only 1 out of every k iterations. To do so, after each

iteration, with probability 1/k, we perform an termination check.

Lemma 2.4.19 Assume that, with probability 1/k, after each iteration of DECONGEST we check

whether f is 9c-optimal. Then the time bounds given in Corollaries 2.4.13 and 2.4.18 hold without

any assumptions about termination.

Proof: We divide the iterations of the algorithm into two sets, those in which the flow is

94E-optimal and those in which it is not.

First we focus on the case when the flow is not 9&-optimal. From Lemmas 2.4.15 and

2.4.17, we see that in all cases, if the current flow f is not 9c-optimal, then one iteration of

DECONGEST takes Q(TMCF) time. We now add to these iterations, a termination check, with

probability 1/k. By Lemma 2.4.10, a termination check takes 11(kTMcF) time, and therefore

the expected running time increases by at most a constant factor.

If f is 9c-optimal, then the termination check recognizes it. However, since we only check

with probability l/k, we expect to execute O(k) iterations in which the flow is 9&optimal

but the termination check does not recognize it. But for both Randomized Strategy 1 and

Randomized Strategy 2, Ip = fQ(k) and Iv = f?(k). Therefore adding k additional iterations

does not increase the asymptotic running time. U

We now summarize the main results of this section.

Theorem 2.4.20 Let TMCF = TMCF(M) be the time to compute a minimum cost flow for

instance M. Then assuming that exponentiation can be done in 0(1) time, the following table

gives the times for procedure DECONGEST:



50 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

_ _ initial flow arbitrary I initial flow 0(c)-optimal

Randomized O(- 4k log n(TMCF + rmlogk)) O(C-3 klogn(TMcF + mlogk))

I O(- 4klogn(TMcF + m + k)) 0(caklogn(TMcF + m + k))

Deterministic O(c-k 2 log nTMCF) 0(iE-ck' log nTMcF)

Proof: This table summarizes Corollary 2.4.16 and 2.4.18 and-Lemma 2.4.11. U

Putting it all together: A Summary of Algorithm CONCURRENT

We can now give running times for algorithm CONCURRENT. We will give two sets of running

times, one when the input is a simple k-commodity concurrent flow problem, and one when the

input is a non-simple k*-commodity concurrent flow problem. Given an instance of a simple

k-commodity concurrent flow problem, we have two options. One option is to use the bounds

for the simple concurrent flow problem. Alternatively, we can use Lemma 2.2.1 to create a

k*-commodity non-simple instance, use the time bounds for the non-simple concurrent flow

problem, and then decompose the solution. This procedure takes O(k'mlog n + kn) time plus

the time to solve a non-simple k-commodity concurrent flow problem. Although this second

method may lead to faster running times, throughout the rest of the chapter, we do not carry

this calculation through. Also, we use the randomized running times given in the first line of

the chart in Theorem 2.4.20 for simple instances and the second line for non-simple instances.

Even though for some simple instances, the second line of randomized running times given in

the chart in Theorem 2.4.20 gives faster running times, do not carry through this calculation.

Theorem 2.4.21 Let TMCF = TMCF(M) be the time to compute a minimum cost flow for

instance M. Then assuming that exponentiation can be performed in 0(1) time, the following

table gives the running times for Algorithm CONCURRENT:

'I simple instance non-simple instance

Randomized 0((-'k log k log n(TMcF + m log k)) O(k*nmlog (S!) log(nU)

+(- 4 k" logk" log n(TMCF + M))

Deterministic O(c 3 k2 log k log n(TMCF + m log k)) O(k*nm log (-) log(nU)

+(c-3 k"2 log k" log n(TMCF + M)))



2.4. ALGORITHMS FOR THE GENERAL CONCURRENT FLOW PROBLEM 51

Proof: Combine Lemma 2.4.1, 2.4.2, Corollary 2.4.16, Corollary 2.4.18 and the fact that a

maximum flow in an n-node m-edge graph can be computed in O(nmrlog(n 2/m)) time [22].

Note that only in the non-simple case does the time for initialization appear in the final time

bounds. U

A scaling algorithm

The dependence on c given in Theorem 2.4.21 can be reduced somewhat, through a technique

we call c-scaling. Instead of calling DECONGEST with the value of c given in the input, we call it

with a series of values of c, each 1 of the previous value. The advantage of scaling is that at the
2

beginning of each call to DECONGEST the initial flow is 0(c)-optimal. Thus we can employ the

bounds on DECONGEST from the second column for the table in Theorem 2.4.20 to obtain faster

running times. The c scaling we use is similar to that used by Goldberg and Tarjan in their

minimum-cost flow algorithm[21]. The details of our scaling algorithm, SCALINGCONCURRENT,

appear in Figure 2.11.

Lemma 2.4.22 Let Tc(c) = Tc(c,1) be the running time of CONCURRENT, on input (c,I"). Let

TD = TD(I, c) be the running time of procedure DECONGEST given an 0(c)-optimal input flow.

Then, given an instance I of a concurrent flow problem, algorithm SCALINGCONCURRENT finds

an c-optimal solution in O(Tc(-!) + TD(o)) time.

Proof:

First we find an 1-optimal multicommodity flow using algorithm CONCURRENT, with f =

1/9. The rest of the computation is divided into scaling phases. We start each phase by dividing

c by 2. Thus our current flow is 18c-optimal with respect to the new f. The bounds given in the

second column of Theorem 2.4.20 imply that the running time of DECONGEST, given an O(c)-

optimal solution is proportional to ce, where c is 2 or 3, depending on whether the algorithm

is randomized or deterministic. Since in each subsequent call to DECONGEST, c decreases by a

factor of 2, the the running times form a geometric series in c-. Hence the running time for

the series is dominated by twice the time for the last iteration. U

Goldberg [20] and Grigoriadis and Khachiyan [26] have shown how to reduce the running

time of our randomized algorithms by an (- 1 factor. Goldberg gives a somewhat simplified



52 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

SCALINGCONCURRENT(, I)

S-- CONCU R.ENT(I, -).
e,=

9

while (>' _ c)
e- e/2.
f 4-- DECONGEST(f,').

return f

Figure 2.11: Algorithm CONCURRENT

version of our proof that leads to a randomized selection strategy that avoids naving to search

for an c-bad commodity. Grigoriadis and Khachiyan generalize our algorithm to solve certain

types of convex programming problems. Their algorithm, when specialized to the case of solving

multicommodity flows, also avoids searching for an e-bad commodity.

We now summarize the results for Algorithm SCALINGCONCURRENT so far:

Theorem 2.4.23 Let TMCF = TMCF(M) be the time to compute a minimum cost flow for

instance M. Then the following table gives the running times of Algorithm SCALINGCONCURRENT,

assuming exponentiation can be implemented in 0(1) time:

11simple instance non-simple instance

Randomized 0(((- 3 + log k)k logn(TMcF + mlogk)) 0(k'nm log (-) log(nU)

+(c-- + log k*)k" log n(TMCF + M))

Deterministic 0((c- + log k)k2 log nTMcr) O(k nm log (n) log(nU)

+(((-2 + log k')k"2 log n(TMCF + "n)))

Proof: Combine Theorem 2.4.21, Corollary 2.4.16, Corollary 2.4.18, Lemma 2.4.22, Theorem

2.4.20 and the fact that a maximum flow in an n-node m-edge graph can be computed in

0(nm log(n 2 /m)) time [22]. Note that only in the non-simple case does the time for initialization

appear in the final bound. U

Given an instance of a concurrent flow problem, the running time for Algorithm SCAL-

INGCONCURRENT is never greater than that of Algorithm CONCURRENT. For the rest of this

chapter, we will quote the running times for algorithm SCALINGCONCURRENT.



2.4. ALGORITHMS FOR THE GENERAL CONCURRENT FLOW PROBLEM 53

2.4.2 Dealing with Exponentiation

In the previous section, we assumed a non-standard model of computation in which exponen-

tiation takes O(I) time. In this section, we show how to implement an iteration of procedure

DECONGEST in the standard RAM model of computation, achieving the same time bounds. Our

approach is to show that even if we require that all variables be represented using O(log(nU))

bits, we can still, in each iteration, achieve the same decrease in 4, up to constant factors.

More specifically, we first show that a flow that satisfies a relaxed set of minimum-cost flow

constraints suffices to achieve a decrease in 4 of 0(14). We then show that a flow satisfying a

second set of relaxed constraints can be modified in 0(m) time to satisfy the first set of relaxed

constraints while having the additional property that the resulting flow can be represented in

O(log(nU)) bits per commodity/edge pair. We then give an approximate length function that

uses 0(log(nU)) bits per edge which can be used in a minimum-cost flow algorithm to produce

a flow that satisfies the second set of relaxed constraints.

Each iteration of procedure DECONGEST, as described in Figure 2.7, iteratively computes

f;, which is a flow that satisfies the demands of commodity i subject to capacity constraints

Au(vw) on each edge vw, and minimizes C1' = E'•eE £(vw) Ifi*(vW)I. Instead, we compute an

approximation L'" to fi*. The flow f" can have cost somewhat more than the cost of fi*, and

it may satisfy slightly relaxed capacity constraints. The key to showing that this flow can be

used in the algorithm instead of fi" is to prove a relaxed version of Lemma 2.4.8.

Lemma 2.4.24 Let C, denote the cost of the current flow of commodity i with respect to

the current length function, and let j,* be a flow that satisfies demands of commodity i and the

constraints

J fi'(vw) 5 2Au(vw) Vvw E E (2.18)

( .,EE W lvw)i '(v,)l <I C + ½( + C, F

Then, if we use .f" instead of f," in DECONGEST with ( < a < we can bound the3a - - 1-6*• w A n on h

decrease of the potential function by fl(- 2 0).

Proof: The difference between this proof and that of Lemma 2.4.8 is as follows. Here we can

conclude that 16(vw)l < 3aAu(vw), and Ji7l S 3aaA < 3c/16. We use that JvTJ < 3(/16 s 1/4



54 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

implies e'+" < e' + iqez + I Iriew. We modify equation (2.13) appropriately, and conclude that
,x,-,' JX '> = ).am

In fact, we do not find such a flow directly. Instead, we compute a flow that satisfies the

somewhat tighter constraints,

ri ;(vw) < !Au(vw) VvW E E
2 (2.19)

StEE (vw) f(v,)w : C* + I+(Cc, + C'-).

We then modify this flow slightly so that it satisfies conditions (2.18) and the new flow can be

represented by 0(log(nU)) bits per edge.

Lemma 2.4.25 Let , be a flow that satisfies conditions (2.19). Then, in O(m) time, we can

convert it into a flow f that satisfies (2.18) and such that (1 - o)f,(vw) + aJ,(vw) can be

represented in O(log(nU)) bits per edge.

Proof: Given the flow f,', we first compute the flow (1 - o)fi + of,' where a is chosen as in

Lemma 2.4.24. We then round the flow on edge vw to an integer multiple of v, = c2/(128m 2ko).

The maximum possible flow value is AU. Dividing the range of flow values by v and substituting

for a, we see that the number of possible flow values is

AU 256AUm 2ok(l + c)ln(mr-'1)
( 2/(128m 2ko) A\3

The number of bits needed is just the logarithm of the number of possible values. Recall that

c is inverse polynomial in n, k is polynomial in n and m = O(n 2), thus a flow value can be

represented in O(log(nU)) bits. Observe that if we just rounded the flow on each edge vw to the

nearest integer multiple of v, we would have no guarantee that the flow conservation constraints

of equation (2.4) or (2.1)- (2.3) are still satisfied. Thus, we must round more carefully. Let T

be a spanning tree in the graph. We round the flow on all the non-tree edges to the nearest

multiple of vi. This rounded flow does not necessarily satisfy the conservation constraints, so

we use the tree edges to correct for the violations we may have introduced. It is easy to see

that by computing the flow values on the edges of T in postorder we can carry out this step in

0(m) time. Observe that the amount of flow we had to add to any non-tree edge is at most v



2.4. ALGORITHMS FOR THE GENERAL CONCURRENT FLOW PROBLEM 55

and the amount that we had to add to any tree edge is at most my, since the flow on a tree

edge may have to correct for the violation across the cut defined by deleting that edge in the

tree.

The resulting rounded flow implicitly defines a •" as it can be written as (1 - a)fi + aJi"

for an appropriately chosen .j'. The flow J" on edge vw is ,(vw) plus a-' times the rounding

error on the edge. We now show that it satisfies the conditions (2.18). The rounding error on

any edge is at most my, and therefore for each edge, fj'(vw) < j'(vw) + u-'m~. Plugging

in the bounds on f;(vw) from (2.19) and the values of a and v, we get an upper bound of

2Au(vw) + 1A. Since u(vw) is integral, we conclude that f'(vw) <_ 2Au(vw). We bound the

cost of !is as follows.

E Et(vw)Ol(vw)OI < E E(If(vW)I+a-'mv)f(vw)

5 (F eEEAVW) 147 (vw)I) + m(c lMarn/e')

_< Co + . (fC, + ,*) + \e (by (2.19) and the

definitions of a and v)

SCie + 1 (C + ±) (using 0 > e").

Therefore we have satisfied the conditions of the theorem. U

Combining the previous two theorems we get the following corollary:

Corollary 2.4.26 Let jf" be a flow satisfying equations (2.19). Let jf" be the flow obtained from

f,' via the procedure described in Lemma 2.4.25 Then if we use f" instead of f1" in DECONGEST

with <' < a -< we can bound the decrease of the potential function during one iteration of

DECONGEST by fl(j4k), while maintaining flow, ,epresented by O(log(nU)) bits per edge. N

Now we show how to compute a flow that satisfies (2.19). We could do so by finding a

minimum-cost flow with respect to the exact length function t. Unfortunately, this length

function is exponential in the size of the input, and computing it exactly might take too long.

Instead, we will describe how to compute an approximate length function i, such that the flow

that has minimum cost with respect to i has cost at most C,* + 6A\/(8k) with respect to t.

By Corollary 2.4.26, such a flow can be used in order to implement the rerouting step in our



56 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

algorithm.

The new length function 1 is integral, consists of O(log(nU)) bits per edge, it is approxi-

mately related to t by the scalar multiplier -y ceAe/(16Umk), and it satisfies -yi(vw) _<(vw)

on each edge vw. We shall show that it takes O(log n) time to compute i(vw) for each edge

vw. In the following we will use C, and C0' to denote the current cost and the minimum cost

of commodity i with respect to length i, respectively.

For each edge, first we compute e@(fv(w)/u(vw)-') approximately so that it has at most ( -

f/(I6km) additive error, then we multiply the result by C-1 U, divide by u(vw), take the integer

part, and set i(vw) to be this value. Using the Taylor series we can compute one bit of el in O(1)

time. Since e*(I(vw)/u(vw)-A) is at most 1 on each edge, it is sufficient to compute O(log(1/())

bits to achieve the desired approximation. Computing the approximate length function takes

O(log(1/()) = 0(logn) time for each edge, and 0(mlogn) time in total.

Because of the approximation and the integer rounding, a flow !,', which has minimum cost

with respect to i, is not necessarily the minimum-cost flow with respect to t. We will show,

however, that a flow that is minimum-cost with respect to i satisfies conditions (2.19).

Lemma 2.4.27 Let ji' be a flow that is minimum cost with respect to the costs 1 defined above.

Then fj• has cost (with respect to £) at most ,AI/(8k) more than the actual minimum-cost flow

with respect to 1.

Proof: Recall that e = e*C/U, and c = c/(16mk). We bound the difference between I and 7£,

a scaled up version of the approximate length function. In computing -yi, we introduce errors

in two places. First, when computing eo(A(vw)-A) to a precision of C, we introduce an error of C.

This error gets scaled up by (- 1 U/u(vw) when we scale up and gets increased by I when we

round 1 down to an integer. Finally, if we scale 1 back to be compatible with t, the whole error

gets scaled by -y. Thus,

£(vw) - 7Y1(vw) •5 -f U(c ( ) + 1 = +). (2.20)

We defined i so that yi(vw) _< 1(vw) on each edge, and hence we have that

"-Y7 < C,. (2.21)



2.4. ALGORITHMS FOR THE GENERAL CONCURRENT FLOW PROBLEM 57

Using these two equations and the fact that 0 > eax we get that:

E•,WEE(vw) jf;(vw)j - C, <_ 2W_,,E(vw) V(vw)l - 7C1' (by (2.21))

:5 EV 11*(vw)I (e(vw) - 71i(vt))

< ,,,~, _ (vwo)I'y (; )+ 1) (by (2.20)):5 E 1A*VW)1Y (uvw)(2.22)

<5 2 Ew Au(vw)!:! 2U~~

16km

- 8k"

Notice that this flow actually satisfies slightly stronger conditions than (2.19). We shall use

this stronger condition in Subsection 2.4.3.

In the randomized implementation, where we used the cost of the current flow C, for the

selection of a bad commodity i, we shall now use the rounded cost Cýi instead. One can show

that the rounding error is small relative to Ei C0', and therefore using Ci does not significantly

decrease the probability that a bad commodity is selected.

To summarize, we have just described how to implement DECONGEST in the RAM model of

computation. We first compute an approximation i to the length function t. Then we compute

the approximate cost of each commodity and choose, either randomly or deterministically, a

commodity to reroute. Next, we compute an approximate minimum-cost flow for that commod-

ity with respect to the costs 1. This process gives us an approximate minimum-cost flow that

satisfies equations (2.19). We then update the flows for commodity i. Finally, we modify the

updated flow as described in Lemma 2.4.25, represent it in O(log(nU)) bits per edge, and start

the next iteration. As the above discussion shows, the time to perform the whole computation

is O(mlogn) plus the time to compute a minimum-cost flow.

We can now update Theorem 2.4.23 to remove the assumption that exponentiation takes

0(1) time.



58 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

Theorem 2.4.28 Let TMCF = TMcF.(M) be the time to compute a minimum cost flow for

instance M. Then the following table gives the times to find an c-optimal solution to the concurrent

flow problem in the RAM model:

1_ simple instance non-simple instance

Randomized O((C-3 +logk)klogn(TmcF+mlogk)) O(k'nmlog(-)log(nU)

+(C- 3 + log k*)k* log n(TMcF + M))

Deterministic 0((-+ log k)k2 log -TmCF) O(k*'m log (a) log(nU)

+((C 2 + logk*)k 2 * logn(TMc.

2.4.3 Implementing One Iteration

In this subsection we consider the problem of choosing the appropriate minimum-cost flow

routine to find a minimum-cost flow subject to the costs i(vw). In some cases we only compute

an approximate minimum-cost flow subject to cost I by further rounding the costs before the

minimum-cost flow computation. In all cases, however, we find a flow that satisfies (2.19).

Different situations require different choices. For general concurrent flow problems, the

best choice seems to be either the algorithm of Goldberg and Tarjan [22] or that of Ahuja,

Goldberg, Orlin and Tarjan [2]. For concurrent flow with uniform capacity, we use Gabow and

Tarjan's [18] algorithm for the assignment problem. When both the demands and capacities are

uniform, we use the algorithm that iteratively computes shortest paths in the residual graph

with nonnegative costs discovered independently by Ford and Fulkerson [291 and Yakovleva [71].

First, we consider the general concurrent flow problem.

Lemma 2.4.29 For a commodity i, a mnimunum-cost flow with respect to i can be found in

O(nm log(n 2/m) log(nU)) time.

Proof: The Goldberg-Tarjan minimum-cost flow algorithm runs in O(nmlog(n 2/m) log(nC))

time, where C is the maximum edge cost, assuming that the costs are integral. Recall that we are

only using O(log nU) bits to represent the integral edge costs, and hence log(nC) = O(lognU).

The above bound can be improved if the capacities are small relative to n 2 /m. In this case

we round the demands and solve this rounded problem using the double scaling algorithm of



2.4. ALGORITHMS FOR THE GENERAL CONCURRENT FLOW PROBLEM 59

Ahuja, Goldberg, Orlin, and Tarjan [2]. We then satisfy the remaining flow on arbitrary paths.

This flow still satisfies (2.19) and the rounding allows us to use a faster algorithm. We will

prove the following lemma:

Lemma 2.4.30 For a commodity i, a flow satisfying (2.19) can be found in

O(nm log(nU) log log(nU)) time.

Proof: Assume without loss of generality that C-' is an integer and define p = Ae/(16nk). We

round the demands for commodity i to integer multiples of p such that the absolute value of

each demand does not increase, the rounded demands still sum to zero, and the total decrease in

the absolute values of the demands is at most 2np. (Recall that each node may have a positive

or a negative demand.) To achieve these constraints, we round all but one of the demands to

the next smallest multiple of p if the demand is positive and to the next largest multiple of p

if the demand is negative. The last demand can then be rounded by at most np to ensure that

the rounded demands still sum to 0.

Since the absolute value of the demand for commodity i has not increased at any node,

there must exist a flow satisfying these demands with cost at most Ci*, subject to costs 1.

Both the demands and the capacities are integral multiples of p. If we divide both the

demands and the capacities by p, we get a problem where the maximum capacity of an edge is

AU/lp = 16Unkc-1 . We can then use the double scaling algorithm of Ahuja, Goldberg, Orlin

and Tarjan [2] for solving the minimum-cost problem with rounded demands. This algorithm

takes O(nm log(nC)loglog(nU')) time on a graph with maximum capacity U'. Plugging in the

value of C from Lemma 2.4.29 and U' = 16Unkc-' yields the time bound. By Lemma 2.4.27,

this procedure gives a flow that satisfies the capacity constraints Au(vw) and has cost at most

cAt/(8k) more than the minimum cost but does not satisfy the demands. We then satisfy the

remaining demands by arbitrary paths from nodes with excess to nodes with deficit. The last

step increases the flow on an edge by no more than 2np = cA/(8k) _5 cAu(vw)/(8k), and adds

a total of no more than 2np EvweE e(vw) : A\4/(8k) to the cost of the flow subject to costs 1.

Combining the minimum-cost flow with the flows on the additional paths, we get a flow

that satisfies (2.19) and proves the lemma. U

In the case of the simple concurrent flow problem we can make the time required for solving



60 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

the minimum-cost flow problem independent of U.

Lemma 2.4.31 For the simple concurrent flow problem, a flow of a commodity i satisfying (2.19)

can be round in the minimum of O(nm logn log(n 2 /m)) and O(nm logn loglog n) time.

Proof: We reduce di by a factor of (1 - c/8). We then find a flow f" that satisfies the reduced

demand d! = (1 - c/8)di and whose cost with respect to I is no more than

CA -\ , EE !(vw)u(vw)/(16k) above the minimnum cost. Then, we multiply the flow on each edge

by (1 - c/8)- 1 . This process gives a flow that satisfies demands, obeys the slightly increased

capacity constraints (1 - c/8)-1 ,\ u(vw), and has cost (subject to t) at most £C,/4 + 6\4/(4k)

above Ci', where $ is the current potential function value. By Lemma 2.4.25, we can use this

flow and still get the same asymptotic improvement in the potential function.

Define p' = cdi/(8m), and round the capacities Au(vw) used for the minimum-cost flow

problem, down to multiples of p'. One can show that the minimum-cost flow with respect to I

that satisfies the decreased demand dý and rounded capacity, is no more than C.

The demand and capacities in this rounded problem are integer multiples of p'. Therefore,

there exists a minimum-cost flow where the flow on the edges is multiple of p'. This flow does

not use edges whose cost is more than Ci/y', and hence these edges can be deleted for the

minimum-cost flow computation.

For getting the approximate minimum-cost flow we can work with a further rounded length

function. We take A(vw) to be the integer part of dJl(vw)/(AU). Since after the capacity

rounding we consider only edges with Au(vw) > it', we have

16c l krU di(vw) l6ckm d

1 6C-1 kind,

I'
- O(C -km).

Therefore the Goldberg-Tarjan minimum-cost flow algorithm runs in O(nmlog(n'/m)logn)

time on this problem.

Now we show that the resulting flow, after multiplication by (1 - (/8)-', satisfies (2.19).

The minimum-cost flow has a single source and a single sink and non-negative costs. Therefore,



2.5. THE UNIT CAPACITY CASE 61

no edge carries more than d& units of flow. Let J'* be a minimum-cost flow with respect to 1.

By an argument similar to the proof of Lemma 2.4.27, the cost of this flow with respect to I is

at most mdi . AU/di . ce*A/(16kmU) <_ cA/(16k) larger than the cost of j' with respect to 1,

where ji' is the minimum-cost flow with respect to 1 that satisfies the reduced demand dj. Now

Lemma 2.4.27 implies that (2.19) is satisfied.

For all but very dense graphs, the double scaling algorithm of Ahuja, Goldberg, Orlin and

Tarjan [2] gives a better bound. As we observed no edge carries more than d units of flow in the

optimal flow of commodity i. Thus, we can also limit capacities to be no more than d,. That
is, wecan st u'(w) = ain u•(v) ''

is, we can set u'(vw) = mi [ W[I, P , pd} . With this modification, the largest capacity is at

most d' = O(mc 1 /s'). The demand and the capacities are multiples of p'. Dividing through

by the scale factor u' yields a problem with integral capacities using O(log n) bits. U

Combining Theorem 2.4.28 and Lemmas 2.4.2, 2.4.29, 2.4.30 and 2.4.31 we obtain the

following theorem that summarizes the results for the general case:

Theorem 2.4.32 For c > 0, algorithm SCALINGCONCURRENT finds an f-optimal solution for

the simple concurrent flow problem in the following time bounds:

11 simple instance non-simple instance

Randomized 0 ((C-3 + log k)knm log2 n log (-)) 0((C-3 + log k')knm log n log(nU) log (-))
"o ((C- 3 + log k)knm log2 n log log n) 0 ((C- 3 + log k*)k•'nm log n log(nU) log log(nU))

Deterministic O (((-2 + log k)k2nm log 2 n log (M2)) O((C-2+logk-)k*2nmlognlog(nU)iog •-))

"o ((,-2 + log k)k2nm log2 n log log n) 0 ((C- 2 + log k*)k* 2nm log n log(nU) log log(nU))

2.5 The Unit Capacity Case

An important special case of the concurrent flow problem occurs when the edge capacities are

all 1. One way to solve this problem is to use the algorithm for the general case, but with

a minimum-cost flow algorithm more suited to graphs with unit capacities. We will discuss

this approach in Section 2.5.1. Sections 2.5.2 through 2.5.5 develop and use a framework for

solving uniform capacity concurrent flow problems via the solution of a series of shortest path

problems. As much of the work needed to develop such algorithms is identical to that done in

Section 2.4, we omit some of the details. The algorithms are sufficiently different, however, to



62 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

merit a fairly involved presentation. For the unit capacity case, we only deal with the simple

concurrent flow problem. It is possible to modify the results of this section to give algorithms

for the non-simple concurrent flow problem, put we do not pursue that here.

2.5.1 Using the Results for the General Case

One approach to solving the unit capacity case is to use the algorithm for the general case. For

efficiency, we mod•:y the minimum-cost flow algorithm that we use. This subsection discusses

this approach.

If the capacities in the concurrent flow problem are uniform, then the capacities in each

minimum-cost flow problem are all equal to \. In this case, there are more efficient minimum-

cost flow algorithms than the ones mentioned in the previous section.

Lemma 2.5.1 For the simple concurrent flow problem with uniform capacities, a flow for a

commodity i satisfying (2.19) can be found in O(m3/I log n) time.

Proof: Since the concurrent flow problem is simple and has unit capacity, the auxiliary minimum-

cost flow problem has one source, one sink and edge capacities all equal to ,. The minimum-cost

flow problem is guaranteed to have a feasible solution. Therefore, it must be the case that the

demand di ! mA\, the total capacity in the networks. Let

_< MA

and

u'(vw) = [---J =1 VvwE E.

We solve this rounded problem and then route the remaining flow on a single path. By ar-

guments similar to those in Lemma 2.4.30, this procedure yields a flow that satisfies (2.19) .

To solve the minimum-cost flow problem with capacities u' and demands d',, we can use an

algorithm of Gabow and Tarjan [181. Gabow and Tarjan show how to modify their scaling



2.5. THE UNIT CAPACITY CASE 63

algorithm for the assignment problem to find a solution to a single-source single-sink minimum-

cost flow problem with m edges, all edge capacities equal to 1, and demand at most d'1 , in

O((m + d',)3 /2 log(nd'1 )) time. Plugging in the bound d'i _< m, we obtain the time bound

claimed in the statement of the lemma. N

When both the capacities and demands are uniform and k is relatively large, we can obtain

better performance by using the Ford and Fulkerson [29] minimum-cost flow algorithm, which

iteratively computes shortest paths in the graph of residual edges with nonnegative costs. Since

each capacity is an integer multiple of A and the lengths are non-negative, a minimum-cost

flow of demand d can be computed by rd/A1 shortest path computations in networks with

nonnegative edge lengths.

The demands are also uniformly equal to 1, thus A > k/m, since there are at least k

units of flow divided between rn edges. Therefore, in this case, the number of shortest path

computations required for finding a minimum-cost flow is at most O(m/k + 1). Each shortest

path can be computed in O(m + nlogn) time [17]. Thus we have shown:

Lemma 2.5.2 For the simple concurrent flow problem with uniform capacities and demands, a

flow for a commodity i satisfying (2.19) can be found in 0 (-!(m + nlogn)) time.

By incorporating Lemma 2.5.2 or Lemma 2.5.1 into Theorem 2.4.32, one can derive running

time bounds for algorithm SCALINGCONCURRENTfor the special cases when the capacities are

uniform and when both the capacities and demands are uniform. Observe that when both the

capacities and demands are uniform, the time to find a minimum-cost flow, 0 (M(m + nlog n)),

may be less than 0(m log k), the time to select a commodity. Because of this case alone, the

bounds in Theorem 2.4.20 contain the extra 0(m log k) term.

Theorem 2.5.3 For c > 0, an c-optimal solution for the simple concurrent flow problem

" with uniform capacities can be found in expected 0((,- 3 + log k)km 3 /2 log2 n) time and in

0((,- 2 + log k)k 2m3/ 2 log2 n) time deterministically,

" with uniform capacities and demands can be found in expected

0((c-- + log k)m log n(m + nlogn + klogk)) time and in 0((C-2 + logk)kmlogn(m +

n log n + k log k)) deterministically.



64 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

2.5.2 Solving Unit Capacity Concurrent Flow Problems

In this section, we rederive algorithms for the special case of the concurrent flow problem with

unit capacities. These are based on treating flow as a collection of paths, rather than as a set

of commodities and lead to improved running times for some cases. In this section, we describe

the procedure REDUCE that is the core of our approximation algorithms, and prove bounds on

its running time. Given a multicommodity flow f, procedure REDUCE modifies f until either f

becomes i-optimal or A is reduced below a given target value. The approximation algorithms

presented in the next two sections repeatedly call procedure REDUCE to decrease a • • factor

of 2, until an e-optimal solution is found.

As before, for simplicity of presentation, we shall assume for now that the value of the length

function 1(vw) = e*1(-I1)/u(vw) = eo(•w') of edge vw can be computed in one step from f(vw)

and represented in a single computer word. In Section 2.5.4 we will remove this assumption

and show that it is sufficient to compute an approximate length function, and show that an

approximate length function can be computed quickly.

Procedure REDUCE (see Figure 2.12) is the analog of procedure DECONGEST. It takes as

input a multicommodity flow f, a target value r, an error parameter c, and a flow quantum

aj for each commodity i. We require that each flow path comprising fi carries flow that is an

integer multiple of aj. The procedure repeatedly reroutes oi units of flow from an g-long path of

commodity i to a shortest path for commodity i. We will need a technical granularity condition

that a, is small enough for each i to guarantee that approximate optimality is achievable through

such reroutings. In particular, we assume that when REDUCE is called, we have

0i og (2 r i =1,...,k. (2.23)3 og(mc-' )

Upon termination, the procedure outputs an improved multicommodity flow f such that

either A is less than the target value r or f is c-optimal. In this section, we assume that C < -L12'

the bound on c needed to prove Theorem 2.3.5.

In the remainder of this section, we analyze the procedure REDUCE shown in Figure 2.12.

First, we show that if the granularity condition is satisfied, the number of iterations in REDUCE

is small. Second, we give an even smaller bound on the number of iterations for the case in



2.5. THE UNIT CAPACITY CASE 65

REDUCE(f, r, c, v, for i -,...,k)
a - (1 + c)r-'e-1 log(mc- 1).
while A > r and f and I are not c-optimal

For each edge vw, t(vw) ,- ea (vw).
Call FINDPATH(f, 1, c) to find an c-long flow path P and a short path Q with the same endpoints as P.
Reroute ai units of flow from P to Q.

return I.

Figure 2.12: Procedure Reduce.

which the flow f is 0(e)-optimal when REDUCE is called. Finally, we will give two algorithms,

UNIT and SCALINGUNIT, that bound the number of iterations needed to solve unit capacity

concurrent flow problems. The former solves the case when c = 0(1), while the latter solves

the case when E = o(1). As in the general case, for ease of presentation, we assume a model of

computation in which exponentiation takes 0(1) time and the word size is unbounded. In later

sections we will remove this assumption, and discuss the implementation of an iteration of the

algorithm.

Bounding the number of iterations of REDUCE

At the beginning of REDUCE, a is set equal to (1 + c)r--c- log(mc 1 ), which is essentially the

same as in the general case. While A > T, the value of a is sufficiently large, so by Lemma 2.4.3

relaxed optimality condition R1 is satisfied. If we are lucky and relaxed optimality condition

R2' is also satisfied, then it follows that f and I are c-optimal. Now, we show that if R2' is not

satisfied, then we can make significant progress. As before, we use f = EVWEE l(vw)u(vw) as

a measure of progress. In the unit-capacity case, f = J.7EE 1(vw) = '•wEE ef((").

Lemma 2.5.4 Suppose ar and r satisfy the granularity condition. Then rerouting oi units of

flow from an E-long path of commodity i to the shortest path with the same endpoints decreases f

by 11( 0. log M)bykminjV lkd,}

Proof: Let P be an c-long path from si to ti, and let Q be a shortest (si, ti)-path. Let A = P-Q,

and B = Q - P. The only edges whose length changes due to the rerouting are those in A U B.



66 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

The decrease in 4 is I(A) + I(B) - e- 0 0*1(A) - e*°-I(B), which can also be written as

(1 - e-o°s)(I(A) - t(B)) - (1 - 1)I(B).

The granularity condition, the definition of a, and the assumption that c < 1/12, imply that

aO, _< 'e < c/2 < 1/2. For0 < z < 1, we have e' > 1 +z, e' < 1 +1z, and e-1 < 1-z.

Thus the decrease is at least

2aa, (I(A) - 1(B)) - (aa,) (4ao,) 1(B). (2.24)

Now, observe that t(A) - 1(B) is the same as I(P) - I(Q), and I(Q) = disti(si,ti). Also,

I(B) < t(P). Plugging these bounds into (2.24) yields a lower bound of

2 aa(I(P) - dist((ji, t))) - 4 a, I(P). (2.25)

But P is c-long, so the quantity in (2.25) must be at least

(ca l ct(P) + CnD d(vw)u(vw) 4 raa(P)
3' min{ADkdiI.} E )-3

2 4 2 ai5aaif(p) _ 50 20r?1(p) + -acAItIc3 min{ D, kdj}

W have seen that I > aao, which implies that 2c > laa, and therefore the first term

dominates the second term. Thus, the third term gives a lower bound on the decrease in 0.

Substiiuting the value of a and using the fact that during the execution of REDUCE we have

r < A• we obtain the claim of the lemma. N

The following theorem bounds the number of iterations in REDUCE.

Theorem 2.5.5 If, for each commodity i, the values 7 and ao satisfy the granularity condition

and we have A = 0(r) initially then the procedure REDUCE terminates after 0(c- max, mi,{DVkd,1)

iterations. If in addition, the input flow f is 0(c)-optimal, then the procedure REDUCE terminates

after 0(max, min{D.kdU* ) iterations.



2.5. THE UNIT CAPACITY CASE 67

UNIT(T,C)
For each commodity i: ari - di, create a simple path from a1 to t4 and route di flow on it.
r .-- A/2.
while f is not 12c-optimal
for every i
until o', and r satisfy the granularity condition

ai- o'i/2.
f 4- REDUCE(f, r,c , d).
r -- r/2.

return f.

Figure 2.13: Procedure Concurrent.

Proof: The same as the proof of Lemma 2.4.6 with max. min{Dhkd, log m substituted for kc-2 .
UU

In most cases, one iteration of the loop in REDUCE is dominated by the time spent in

FINDPATH, so we concentrate on bounding the number of calls to FINDPATH. Although there

are some cases in which the call to FINDPATH is not the dominant part of an iteration of

REDUCE, we assume for now that it is. In Section 2.5.5, we will see a case when the time spent

on calls to FINDPATH is not the dominant step, and will deal with it separately there.

Solving Unit Capacity Concurrent Flow

In this section, we give approximation algorithms for the concurrent flow problem with uniform

capacities. We describe two algorithms: UNIT and SCALINGUNIT. Algorithm UNIT is simpler

and is best if E is constant. SCALINGUNIT gradually scales c to the right value and is faster for

S=0(1).

The presentation of this section is slightly different than in the general case. Instead of

expressing the running times in terms of the number of minimum-cost flow computations, we

express it in terms of the number of calls to the procedure FINDPATH. FINDPATH has both a

deterministic and a randomized implementation, so we will put off the difference between the

two until we discuss FINDPATH in more detail.

Algorithm UNIT (see Figure 2.13) consists of a sequence of calls to procedure REDUCE

described in the previous section. The initial flow is constructed by routing each commodity



68 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

i on a single flow path from si to ti. Initially, we set oa = di. Before each call to REDUCE

we divide the flow quantum a, by 2 for each commodity where this is needed to satisfy the

granularity condition (2.23). Each call to REDUCE modifies the multicommodity flow f so

that either X decreases by a factor of 2 or f becomes E-optimal. In the latter case algorithm

CONCURRENT terminates and returns the flow. As we will see, O(logm) calls to REDUCE will

suffice to achieve f-optimality.

Theorem 2.5.6 Let TF be the time used by by procedure FINDPATH. The algorithm UNIT finds

an c-optimal multicommodity flow in O((c--k log n + c-m log n)TF) time.

Proof: Immediately after the initialization, we have A < D. To bound the number of phases

we need a lower bound on the minimum value of A. Observe that for every multicommodity

flow f, the total amount of flow in the network is D. Every unit of flow contributes to the total

flow on at least one of the edges, and hence -,,.1E f(vw) >_ D. Therefore,

A > D/m, (2.26)

which implies that the number of iterations of the main loop of UNIT is

0 (log ('D )) = O (log m).

By Theorem 2.5.5 procedure REDUCE executes O(c - mi"IDJ 4,1) iterations during a single call to

REDUCE. Throughout the algorithm, for each i, ai is either equal to d,, or is O(c2 r/ log(mc-1 )).

In the first case,

min {D, kd} min {D, kd,}
a, di

< k.

In the second case

mn {D, kd, = min {D, kd,} C 2 T-1 log(mC-1 )



2.5. THE UNIT CAPACITY CASE 69

SCALING UNIT(Z, C)
(I ".. r

Call UNIT(I, e), and let f be the resulting flow.
r -- r/2.

while c' > c,

for every i,
until o, and r satisfy the granularity condition,

0, 4- ov/2.
f - REDUCE(f, r, C', a).

return f.

Figure 2.14: Procedure ScalingConcurrent.

< C Dlog(mc')"

Thus, the total number of iterations of the loop of REDUCE is O(r-1(k + f- 2 _ 2log(mcI)). The

value r is halved at every iteration, and therefore the total number of calls required for all

iterations is O(c-'klog n) plus twice the number required for the last iteration of UNIT. It

follows from (2.26) that r = ) and the total number of iterations of the loop of REDUCE

is at most O(clklogn + C-3mlogn). E

If c = o(1), we use the algorithm SCALINGCONCURtRENT, shown in Figure 2.14. The al-

gorithm starts with a large c and then gradually scales c down to the required value. More

precisely, algorithm SCALINGUNIT starts by applying algorithm UNIT with c = -. SCALIN-12

GUNIT then repeatedly divides c by a factor of 2 and calls REDUCE. After the initial call to

UNIT, f is 1-optimal, and A is no more than twice the minimum possible value. Therefore,

. cannot be decreased below T/2, and each subsequent call to REDUCE returns an c-optimal

multicommodity flow (with the current value of c). As in UNIT each call to REDUCE uses the

largest flow quantum a permitted by the granularity condition (2.23).

Theorem 2.5.7 Let TF be the time taken by procedure FINDPATH, then algorithm SCALINGU-

NIT finds an c-optimal multicommodity flow in O((k + mc-')log nTF) time.

Proof: As is stated in Theorem 2.5.6, the call to procedure UNIT uses O((k + m)logn) calls

to FINDPATH and returns a 1-optimal multicommodity flow f. Hence, A is no more than twice



70 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

the minimum. Therefore all subsequent calls to REDUCE returns an c-optimal multicommodity

flow f.

The time required by one iteration is dominated by the call to REDUCE. The input flow f of

REDUCE is 24c'-optimal, so, by Theorem 2.5.5, REDUCE executes O(maxh- mhif.k., ) iterations

of FIN DPATH. We have seen in the proof of Theorem 2.5.6 that O(maxj , I{Dd,1) is at most

O(k + -- Mmlogn). The value of e' is reduced by a factor of 2 in every iteration. So the total

number of calls to FINDPATH is

0 (k + C'2 Mlog n)= O(k) + O (C-2mlogn).

There are at most log(c-1 ) - 0(logn) iterations, so the first term sums to O(klogn). The

second sum is a geometric series and is no more than twice the last term, so it is bounded by

O(C•2 m log n). Combining this bound with the bound on procedure UNIT from Theorem 2.5.6

yields the claim. U

2.5.3 Implementing One Iteration

We have shown that REDUCE terminates after a small number of iterations. It remains to show

that each iteration can be carried out quickly. REDUCE consists of three steps: computing

lengths, executing FIN DPATH and rerouting flow. Assuming that exponentiation can be per-

formed in 0(1) time, computing lengths takes 0(m) time. Thus, we focus our attention on the

other two steps.

We first consider the time taken by procedure FINDPATH. We shall give three implementa-

tions of this procedure. First, we will give a simple deterministic implementation that runs in

O(k'(m + n log n) + n , ') time, then a more sophisticated implementation that runs in time

0(k'n log n + m(log n + min {k, k'(logdmax + 1)))), and finally a randomized implementation

that runs in expected 0(c-1 (m + n log n)) time. All of these algorithms use the shortest-paths

algorithm of Fredman and Tarjan [17] that runs in O(m + nlogn) time.

To deterministically find a bad flow path, we first compute, for each source node s,, the

length of the shortest path from s, to every other node v, which takes 0(k'(m + nlogn))

time. In the simplest implementation, we then compute the length of every flow path in P and



2.5. THE UNIT CAPACITY CASE 71

compare its length to the length of the shortest path to decide if. the path is c-long. There

can be at most E" j flow paths, each consisting of up to n edges, and hence computing theseU.

lengths takes 0 (n -d) time.

To decrease the time required for FINDPATH, we must find an c-long path, if one exists,

without computing the length of every path. The following lemma explains how to achieve this:

Lemma 2.5.8 The total time required for deterministically implementing an iteration of REDUCE

(assuming that exponentiation is a single step) is O(k*n log n+m(log n+min {k, k*(log dm. + 1)))).

If there is an c-long flow path for commodity i then the longest flow path for commodity

i must be E-long. Thus, instead of looking for an c-long path in Pi for some commodity i, it

suffices to find an c-long path in the directed graph obtained by taking all flow paths in Pi, and

treating the paths as directed away from s,. In order to see if there is an c-long path, we need

to compute the length c the longest path from si to t1 in this directed graph. To facilitate this

computation, we shall maintain that the directed flow graph is acyclic.

Let G, denote the flow graph of commodity i. If Gi is acyclic, an O(m) time dynamic

programming computation suffices to compute the longest paths from s, to every other node.

Suppose that during an iteration we reroute flow from an c-long path from 3i to ti, in the flow

graph Gi. We must first update the flow graph G, to reflect this change. Second, the update

might introduce directed cycles in Gi, so we must eliminate such cycles of flow. We use an

algorithm due to Sleator and Tarjan [63] to implement this process. Sleator and Tarjan gave

a simple O(nm) algorithm and a more sophisticated O(m log n) algorithm for the problem of

converting an arbitrary flow into an acyclic flow.

Eliminating cycles only decreases the flows on edges, so it cannot increase t. Thus the

bound from Theorem 2.5.5 on the number of iterations in REDUCE still holds.

We compute the total time requircd for each iteration of REDUCE as follows. In order to

implement FINDPATH, we must compute a shortest path from s, to t4 in G and the longest

path from s, to t, in G, for every commodity i, so the time required is 0(k*(m + n log n) + kin).

Furthermore, after each rerouting, we must update the appropriate flow graph and elimi-

nate cycles. Elimination of cycles takes O(m log n) time. Combining these bounds gives an

0(k'n log n + m(k + log n)) bound on the running time of FIN DPATH.



72 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

In fact, further improvement is possible if we consider the flow graphs of all commodities

with the same source and same flow quantum oa together. Let G,, be the directed graph

obtained by taking the union of all flow paths P E Pi for a commodity i with se = v and

ai = a, treating each path as directed away from v. If G.,, is acyclic, an O(m) time dynamic

programming computation suffices to compute the longest paths from v to every other node in

During our concurrent flow algorithm all commodities with the same demand have same

flow quantum. To limit the different flow graphs that we have to consider we want to limit the

number of different demands. By decomposing demand di into at most Llog diJ + 1 demands

with source s, and sink ti we can assume that each demand is a power of 2. This way the

number of different flow graphs that we have to maintain is at most k'(logdn. + 1). E

Next, we give a randomized implementation of FINDPATH that is much faster when f is not

too small; this implementation is similar to the randomized implementation of the general case.

If f and t are not c-optimal, then relaxed optimality condition R2' is not satisfied, and thus

c-long paths contribute at least an c-fraction of the total sum E=1 pe,. A(P)f,(P). Therefore,

by randomly choosing a flow path P with probability proportional to its contribution to the

above sum, we have at least an E chance of selecting an c-long path. Furthermore, we will

show that we can select a candidate c-long path according to the right probability in O(m)

time. Then we can compute a shortest path with the same endpoints in O(m + n log n) time,

which enables us to determine whether or not P was an c-long path. Thus we can implement

FINDPATH in 0(f-'(m + nlogn)) expected time.

The contribution of a flow path P to the above sum is just the length of P times the flow on

P, so we must choose P with probability proportional to this value. In order to avoid examining

all such flow paths explicitly, we use a two-step procedure, as described in the following lemma.

Lemma 2.5.9 If we choose an edge vw with probability proportional to e(vw)f(vw), and then

we select a flow path among paths through this edge vw with probability proportional to the value

of the flow carried on the path, then the probability that we have selected a given flow path P is

proportional to its contribution to the sum I'k=I >.PEP, 1(P)fi(P).

Proof: Let B =1 •=c , I(P)f,(P). Select an edge vw with probability f(vw)t(vw)/B.



2.5. THE UNIT CAPACITY CASE 73

Once an edge vw is selected, choose a path P E P' through edge vw with probability L21

Consider a commodity i and a path P E Pi.

Pr(P chosen) = j Pr(vw chosen) . (P)

E f(Vw)
- z f(vW)1(vw) f,(P)

VUEP Bvw)
= 11, 1(wv)f,(P)

VWEP

,(P)A(P)

B

Choosing an edge with probability proportional to £(vw)f(vw) can easily be done in 0(m)

time. In order to then choose with the right probability a flow path going through that edge,

we need a data structure to organize these flow paths. For each edge we maintain a balanced

binary tree with one leaf for each flow path through the edge, labeled with the flow value of

that flow path. Each internal node of the binary tree is labeled with the total flow value of its

descendent leaves. The number of paths is polynomial in n and c-, and therefore using this

data structure, we can randomly choose a flow path through a given edge in 0(log n) time.

In order to maintain this data structure, each time we change the flow on an edge, we must

update the binary tree for that edge, at a cost of 0(log n) time. In one iteration of REDUCE

the flow only changes on 0(n) edges, and therefore the time to do these updates is 0(n log n)

per call to FIN DPATH, which is dominated by the time to compute single-source shortest paths.

We have shown that if relaxed optimality condition R2' is not satisfied, then, with proba-

bility at least c we can find an c-long path in O(m + n log n) time. FIN DPATH continues to pick

paths until either an c-long path is found or 12c trials are made. Observe that given that f and

t are not yet (-optimal (which implies that condition R2' is not yet satisfied), the probability

of failing to find an c-long path in le trials is bounded by l/e. Thus, in this case, REDUCE can

terminate, claiming that f and I are E-optin.- with probability at least 1 - l/e. Computing

lengths and updating flows can each be done in 0(nlog n) time, and thus we get the following



74 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

bound:

Lemma 2.5.10 One iteration of REDUCE can be implemented to run in expected time (C-1 (m+

n log n)) time (assuming that exponentiation is a single step). N

The randomized algorithm, as it stands, is Monte Carlo; there is a non-zero probability

that REDUCE erroneously claims to terminate with an c-optimal f. To make the algorithm Las

Vegas (never wrong, sometimes slow), we introduce a deterministic check. If FIN DPATH fails to

find an c-long path, REDUCE computes the sum r,. disti(si, tQ)di to the required precision and

compares it with A •w £(vw)u(vw) to determine whether f and I are really E-optimal. If

not, the loop resumes. The time required to compute the sum is O(k( (m-+ n log n)), because at

most k* single-source shortest path computations are required. The probability that the check

must be done t timaes in a single call to REDUCE is at most (e-)1-, so the total expected

contribution to the running time of REDUCE is at most O(k*(m + nlogn)).

Recall that the number of iterations of REDUCE is greater than max' mia{D,kd.) which in turn

is at least k. Since in each iteration we carry out at least one shortest path computation, the

additional time spent on checking does not asymptotically increase our bound on the running

time for REDUCE.

2.5.4 Dealing with Exponentiation

To remove the assumption that exponentiation can be performed in 0(1) time, we shall do

two things. First we shall show that it is sufficient to work with edge lengths i(vw) that are

approximations to the actu 1 engths 1(vw) - e01(0W). We then show that computing these

approximate edge lengths does not change the asymptotic running times of our algorithms.

In fact, we show that for large values of E (e.g., when c is a constant), the time required

for FINDPATH can be reduced by using approximate lengths. To do so requires tu, changes:

using a different implementation of Dijkstra's algorithm and using a more sophisticated data

structure for storing the flow paths going through an edge.

The first step is to note that in the proof of Lemma 2.5.4, we never used the fact that we

reroute flow onto a shortest path. We only need that we reroute flow onto a sufficiently short

path. More precisely, it is easy to convert the proof of Lemma 2.5.4 into a proof for the following



2.5. THE UNIT CAPACITY CASE 75

claim. The conversion is similar to that used to prove Lemma 2.4.24 via Lemma 2.4.8.

Lemma 2.5.11 Suppose that oa and r satisfy the granularity condition and let P be a flow path

of commodity i. Let Q be a path connecting the endpoints of P such that the length of Q is

no more than et(P)/2 + c-$/2 greater than the length of the shortest path connecting the same

endpoints. Then rerouting a, units of flow from path P to Q decreases 0 by 1(, 0 log m)).

We now show that in order to compute the lengths of paths up to the precision given in

this lemma, we only need to compute the lengths of edges up to a reasonably small amount of

precision.

By Lemma 2.5.11, the length of a path can have a rounding error of c '
2D

Each path has at most n edges, so it suffices to ensure that each edge has a rounding error of

1 A
1(f \ E (vw)u(vw)/2). (2.27)

vwEE

We shall now bound this quantity. The value A is the maximum flow on an edge and hence

must be - '-- -. s large as the average flow on an edge, i.e., A > v f(vw)/m. Every unit of

flow contributes to the total flow on at least one edge, and hence F',, f(vw) > D. Combining

with the previous inequality, we get that

A/D > 1/rn. (2.28)

The potential function -,I.,EE f(vw)u(vw) is at least as big as the length of the longest edge,

i.e.,

£(vw)u(vt) ea. (2.29)
vwvEE

Plugging (2.28) and (2.29) into (2.27), we see that it suffices to compute the length of an edge

with an error of at most 'e". Each edge has a positive length of at most cc" and can be

expressed as e'~p, where 0 < p < 1. Thus we need to compute p up to an error of -. To do

so, we need to compute O(log(t-cnm)) bits, which by the assumption that (- is polynomial

in n, is just O(log n) bits.



76 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

By using the Taylor series expansion of e, we can compute one bit of the length function

in O(1) time. Therefore, to compute the lengths of all edges at each iteration of REDUCE, we

need O(m log n) time. We shail see that in the deterministic implementation of REDUCE each

iteration takes fl(m log n) time (the time required for cycle canceling). Therefore the time spent

on computing the lengths is dominated by the running time of an iteration.

The approximation above depends on the current value of X, which may change alter each

iteration. It was crucial that we recomputed the lengths of every edge in every iteration. The

time to do so, O(m log n), would dominate the running time of the randomized impiementation

of REDUCE. (Recall that the randomized implementation does not do cycle canceling.) Thus,

we need to find an approximation that does not need to be recomputed at every iteration. We

choose one that does not depend on the current A and hence only needs to be updated on the

0(n) edges on which the flow actually changes. We proceed to describe such an approximation

that depends on r rather than A.

Throughout REDUCE all edge length are at most eO(*'), and at least one edge has length

more than e"7 . Therefore, £,,weE t(vw)u(vw) is at least ear, and by the same argument as for

the deterministi.- case 0(log n) bits of precision suffice throughout REDUCE. When we first call

REDUCE, we must spend 0(mrlogn) time to compute the edge lengths. For each subsequent

iteration, we only need to spend O(nlog n) time updating the O(n) edges whose length has

changed. Since each iteration of REDUCE is expected to take O(f-1 (m + nlogn)) time to

compute shortest paths in FINDPATH, the time for updating edges is dominated by the time

required by FINDPATH. While it appears that the time to initially compute all the edge lengths

may dominate the time spent in one call to REDUCE, as we have seen, whenever any of our

algorithms calls REDUCE, it performs fQ(log n) iterations. Each iteration is expected to take at

most fQ(clm) time to compute the shortest paths in FINDPATH. Therefore, the time spent on

initializing lengths is dominated by the running time of REDUCE.

In describing the randomized version of FINDPATH in Lemma 2.5.9, we assumed we knew

the exact lengths. By using the approximate lengths, however, we do not significantly change a

path's apparent contribution to the sum E=l E,•r. e(P)f,(P). Hence, we do not significantly

reduce the probability of selecting a bad path.

Thus we have shown that without any assumptions, REDUCE can be implemented determin-



2.5. THE UNIT CAPACITY CASE 77

istically in the same time as is stated in Lemma 2.5.8. Although for the randomized version,

there is additional initialization time, for all the algorithms in this chapter, the initialization

time is dominated by the time spent in the iterations of REDUCE.

Theorem 2.5.12 The running times required for the deterministic implementations of proce-

dure REDUCE stated in Lemma 2.5.8 hold without the assumption that exponentiation takes 0(1)

time. The times required by the randomized implementations increase by an additive term of

O(lm log n) without this assumption.

2.5.5 Further implementation details

In this section we show how one can reduce the time per iteration of REDUCE for the case

in which c is a constant. First, we show how using approximate lengths can reduce the time

required by FINDPATH; we use an approximate shortest-paths algorithm that runs in O(m +

nc-r) time. Then, we give improved implementation details for an iteration of REDUCE to

decrease the time required by other parts of REDUCE.

We now describe how, given the lengths and an c-long path P from s to t, we can find, in

O(m + nc-) time, a path Q with the same endpoints such that I(Q) < disti(s,t) + cl(P)/2.

First, we discard all edges with length greater than 1(P), for they can never be in a path

that is shorter than P (if P is a shortest path between s and t then P is not an c-long path).

Next, on the remaining graph, we compute shortest paths from S using approximate edge-

lengths (v, w) = " [I(vw),2- ], thus giving us disti(s, t), an approximation of disti(s, t),

the length of the actual shortest (s, t)-path. There are at most n - 1 edges on any shortest path,

and for each such edge, the approximate length is at most '") more than the actual length.

Thus we know that

nc1(P)
disfl(s,t) <distj(s,t) + 2nf1

cf(P)
= disti(s,t) +

Further, since each shortest path length is an integer multiple of " and no more than I(P), we

can use Dial's implementation of Dijkstra's algorithm [13] to compute disti(s, t) in O(m + nc)

time.



78 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

Implementing FINDPATH with this approximate shortest path computation directly im-

proves the time required by a deterministic implementation of REDUCE. The randomized imple-

mentation of FINDPATH with approximate shortest path computation requires O(e-c(m+nnC1 ))

expected time. In order to claim that an iteration of REDUCE can be implemented in the same

amount of time, we must handle two difficulties: updating edge lengths and updating each

edge's table of flow paths when flow is rerouted. Previously, these steps took O(n log n) time,

which was dominated by the time for FINDPATH. We have reduced the time for FINDPATH, so

the time for these steps now dominates. We now show how to carry out these steps in O(n)

time. For the first step, we show that a table can be precomputed so that each edge length can

be updated in constant time. For the second step, we sketch a three-level data structure that

allows selection of a random flow path through an edge in 0(n) time, and allows constant-time

addition and deletion of flow paths.

Suppose that before computing the length ea'(1w), we were to round of(vw) to the nearest

multiple of c/c, for some constant c. This rounding introduces an additional multiplicative

error of 1 + 0(c/c) in the length of each edge and hence an additional multiplicative error of

1 + 0(c/c) on each path. By arguments similar to those in the previous subsection, however,

this process still gives us a sufficiently precise approximation.

Now we show that by rounding in this way, there are a small enough number of possible

values for £(vw) that we can just compute them all at the beginning of an iteration of REDUCE

and then compute the length of an edge by simply looking up the value in a precomputed table.

The largest value of af(vw) we ever encounter is O(C-1 log n). Since we are only concerned

with multiples of c/c, there are a total of only 0(,E2 log n) values, we can ever encounter. At

the beginning of each iteration, we compute each of these numbers to a precision of 0(logn)

bits in O(C-2 log2 n) time. Once we have computed all these numbers, we compute the length

of an edge by computing of(vw), truncating to a multiple of 'lc, and then looking up the

value of f(vw) in the table. This process takes 0(1) time. Thus for constant C, we are spending

0(log2 n + m) = 0(m) time per iteration.

Now, we address the problem of maintaining, for each edge, the flow paths going through

that edge. Henceforth, we will describe the data structure associated with a single edge. First,

suppose that all flow paths carry the same amount of flow, i.e., a, is the same for each. In this



2.5. THE UNIT CAPACITY CASE 79

case, we keep pointers to the flow paths in an array. We maintain that the array is at most 1/4

empty. It is then possible to randomly select a flow path in constant expected time as follows;

one randomly chooses an index and checks whether the corresponding array entry has a pointer

to a flow path. If so, select that flow path. If not, try another index.

One can delete flow paths from the array in constant time. If one maintains a list of empty

entries, one can also insert in constant time. If the array gets too full, copy its contents into

a new array of twice the size. The time required for copying can be amortized over the time

required for the insertions that filled the array. If the array gets too empty, copy its contents

into a new array of half the size. The time required for copying can be amortized over the

time required for the deletions that emptied the array. (See, for example, [12], for a detailed

description of this data structure.)

Now, we consider the more general case in which the flow values of flow paths may vary.

In this case, we use a three-level data structure. In the top level, the paths are organized

according to their starting nodes. In the second level, the paths with a common starting node

are organized according to their ending nodes. The paths with the same starting and ending

nodes may be assumed to belong to the same commodity, and hence all carry the same amount

of flow. Thus, these paths can be organized using the array as described above.

The first level consists of a list. Each list item specifies a starting node, the total flow of all

flow paths with that starting node, and a pointer to the second-level data structure organizing

the flow paths with the given starting node. Each second-level data structure also consists of

a list. Each item in the second level list specifies an ending node, the total flow of all flow

paths with that ending node and the given starting node, and a pointer to the third-level data

structure, the array containing flow paths with the given starting and ending nodes.

Now we analyze the time required to maintain this data structure. Adding and deleting

a flow path takes 0(l) time. Choosing a random flow path with the right probability can be

accomplished in 0(n) time. First w randomly choose a value between 0 and the total flow

through the edge. Then we scan the first-level list to select an appropriate item based on the

value. Next we scan the second-level list pointed to by that item, and select an item in the

second-level list. Each of these two steps takes 0(n) time. Finally, we select an entry in the

third-level array. In the third level array, all flows have the same c,, thus an entry can be chosen



80 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

O(1) expected time by the scheme described for the special case when all flow paths had the

same value.

So we have shown that for constant c, each of the three steps in procedure REDUCE can be

implemented in 0(m) expected time, thus yielding the following lemma.

Lemma 2.5.13 If c = O(1), then procedure REDUCE can be implemented in expected 0(m)

time.

Combining the results in this section, we get theorems that summarize our results. First, we

consider the case for a constant c. In this case we use algorithm UNITrombining Theorem 2.5.6,

Lemmas 2.5.8 and 2.5.10, Theorem 2.5.12 and Lemma 2.5.13 we get the following theorem:

Theorem 2.5.14 For any constant t > 0, algorithm UNIT finds an c-optimal solution for the unit-

capacity concurrent flow problem in 0(m(k + m) log n) expected time and in O(m(k + m)(log n +

min {k, k" log dmnf1x}) log n) deterministically. U

Using Theorem 2.5.7, Lemmas 2.5.8 and 2.5.10,and Theorem 2.5.12 we obtain the following

bounds on the running time of algorithm SCALINGUNIT:

Theorem 2.5.15 For 0 < ( < 1/12, algorithm SCALINGUNIT finds an c-optimal solution to the

unit-capacity concurrent flow problem in expected time 0((kE- 1 + mC3 log n)(m + n logn)) and

determiniitically in time 0((k + c 2m)logn)(k'nlog n + m(logn + min {k,k*(logdm. + 1)}))).

2.6 Open Problems

The big open questions are whether the dependence on c can be reduced, and whether an algo-

rithm similar to CONCURRENT can be used to get an exact algorithm for the multicommodity

flow problem. The dependence on k, n and m is certainly acceptable, since the best algorithms

for performing k maximum flows take, up to logarithmic factors, O(knrm) time. Yet, the de-

pendence on c is not as satisfying. If we want to get solutions that have accuracy ( = o(n- 1)

algorithm CONCURRENT takes more time than the exact linear programming algorithms.



2.6. OPEN PROBLEMS 81

1 1 "3

3
commodity s I demand symbol

1 VI v2  2 -
2 VI V3 I

Figure 2.15: A bad example for an of our algorithm

The other problem is that of obtaining an exact algorithm. As is done in interior-point

linear programming algorithms, we could run our algorithm until it is possible to do a rounding

step. In order to achieve the necessary accuracy, however, c must be much too small to be

of any practical interest. Are there any approaches that would allow us to round earlier?

One drawback of our algorithm is that, given an optimal solution, it is unable to recognize it.

Consider the graph in Figure 2.15. This problem has two commodities. Commodity 1 wants to

send 2 units of flow between v, and v2 and commodity 2 wants to send 1 unit of flow between vi

and v3. Suppose that as an initial solution we choose the routing that appears in the graph on

the right. The flow of commodity 1 is represented by heavy lines and the flow for commodity

2 is represented by a dashed line. This solution has A = 1, which is optimal. The values of

the edge lengths appear along the edges. Consider the two paths for commodity 1. The top

path v V2 has cost e*, while the bottom path vIv 3v2 has cost e* + e2&/3/3. Thus, the algorithm

routes flow off the bottom path and onto the top path. The flow of the top path is now more

than the capacity, which causes A to increase. Thus we no longer have an optimal solution.

The reason that this unfortunate phenomenon occurs is that we require that the dual vari-

ables be a predetermined function of the primal variables. There exist problems for which such

a solution seems hard to achieve. An algorithm that computes an exact solution would probably

need to relax this condition. Perhaps a more fruitful approach is to use our algorithm to get



82 CHAPTER 2. MULTICOMMODITY FLOW ALGORITHMS

close to the optimal solution and then switch to some other algorithm.



Chapter 3

Applications of Multicommodity

Flow'

3.1 Introduction

The techniques for solving multicommodity flow problems have a host of applications and

extensions. In Section 3.2 we shall discuss a special case where it is possible to find integral

flows, and which has applications to a VLSI routing problem. In Section 3.3, we show how the

solution to a concurrent flow problem can be used to help find sparse cuts in graphs.

3.2 An Integer Theorem for Multicommodity Flows

In this section we discuss situations in which the techniques presented in Chapter 2 can be

used to obtain good integral solutions. None of the four algorithms, CONCURRENT, SCALING-

CONCURRENT, UNIT, or SCALINGUNIT find flows that are integral. For many applications,

it is desirable to have integral solutions. In Section 3.2.1, we will discuss an application to a

VLSI routing problem, in which the flows represent numbers of wires, and thus we want the

flow to take on integral values. In general, we can not obtain results about integral solutions

that are as strong as the results we have obtained about non-integral solutions. For some cases

'This chapter contains joint work with Tom Leighton, Fillia Makedon, Serge Plotkin, ]va Tardos and Spyros
Tragoudas [42] and joint work with Philip Klein, Serge Plotkin and tva Tardos [35].

83



84 CHAPTER 3. APPLICATIONS OF MULTICOMMODITY FLOW

of interest, however, we can obtain rather strong results. The ability to do so is interesting

because the integer multicommodity flow problem seems to be harder than the non-integral

one: the integer problem is NP-hard, while, as we have discussed, the non-integral problem can

be solved exactly in polynomial time, using linear programming.

For the remainder of this section, we focus on the case when we have a unit-capacity unit-

demand problem in which A\ = fl(log n). Using similar arguments one can obtain integer

solutions within some guaranteed factor of optimal for some problems in which the demands

and capacities are not uniform, but we will not pursue that direction here. In Chapter 6 we

will show how to find integer solutions to a related problem.

The unit-capacity unit-demand problem in which A - S(logn) is one of those studied

by Raghavan [50] and Raghavan and Thompson [51, 52]. The problem is to find a solution

to a unit-capacity unit-demand concurrent flow problem in which all flows must be integral.

They introduced a technique for solving this type of problem known as randomized rounding.

We describe the idea as it relates to the unit-capacity unit-demand concurrent flow problem.

First, ignore the integrality constraints and solve the resulting problem, known as the linear-

programming relaxation, using any linear-programming algorithm. Since this problem has unit

demands, the flow for each commodity is a collection of paths, each of which carries some

amount of flow between 0 and 1. Then interpret the flow on path p as the probability that all

flow for that commodity is on path p. Using Chernoff-type bounds, Raghavan and Thompson

show that, if " - fQ(log n), then the resulting flow is such that

A _< \ + O(/'-logn). (3.1)

Raghavan later showed how to make this algorithm deterministic. The deterministic algorithm

still requires the solution of the linear-programming relaxation and a derandomized version of

the randomized rounding.

Our algorithms can be used to replace the linear-programming step, thereby giving a faster

algorithm for the problem. However, we can use our techniques to achieve a more interest-

ing and efficient result. By slightly modifying algorithm SCALINGUNIT, we obtain an algo-

rithm that finds an integral flow satisfying (3.1) directly. In other words, we do not need to



3.2. AN INTEGER THEOREM FOR MULTICOMMODITY FLOWS 85

solve the linear-program relaxation and perform the rounding. Our modification to algorithm

SCALINGUNIT provides an alternative proof of Raghavan and Thompson's result[51]. It also

yields a significantly faster algorithm, since the time-consuming step is now approximately

solving a concurrent flow problem, rather than exactly solving a linear-program.

To find such an integral flow, we simply run algorithm SCALINGUNIT with the modification

that we never allow any of the ao to become non-integral. With this modification, di = 1, i =

1,... k, and therefore a, = 1, i = 1,..., k. Thus, we never allow the step o'* - ao/2 in UNIT or

SCALINGUNIT to be executed. Consequently, if the granularity condition (2.23) becomes false,

we terminate the algorithm. We now show that this algorithm gives an integral solution that

is sufficiently close to optimal.

Theorem 3.2.1 Assume we run algorithm SCALINGUNIT on a concurrent flow problem in which

all d, = 1, i = 1,..., k, but maintain that the flows are integral by terminating whenever we would

have executed the step oa ,- oaj2. If A* = Q(log n), then this algorithm yields an integral solution

with \ = \A + 0(V/X7To ).

Proof: SCALINGUNIT begins with a call to UNIT. The call to UNIT can terminate in two ways,

either with a -L-optimal flow, or because granularity condition (2.23) would become false if a,

were divided by 2. First suppose the call to UNIT terminates because the granularity condition

becomes false. At this point, we have

T< 2 7 1, (3.2)
2 3log(mc-1)

where r is the target value for A. In particular, we have -r > A/2 and c = , and therefore
12'

A= O(log n). By our assumption A* = Q(log n), and thus A•< A* + O(VIX1To).

Now assume that the call to UNIT terminates with a -L-optimal flow. We proceed with

SCALINGUNIT. It terminates when the granularity condition becomes false, at which point

inequality (3.2) implies that c2 = O((logm)/7-). The flow f is E-optimal and integral. So

A_< (1 + i)A" < \* + O(A' /(Iogm)/T). Since r = \/2 > A\/2, this bound on A is at most

A + O(v/X"1ogTm), as required. N

Observe that Theorem 3.2.1 gives a direct proof of the theorem of Raghavan and Thompson,

in the sense that in order to find an integral flow, we never need to resort to a fractional flow as



86 CHAPTER 3. APPLICATIONS OF MULTICOMMODITY FLOW

an intermediate step. Not only does it give a direct proof, but. it also gives a faster algorithm.

On any input, the modified integral algorithm does no more work than the original version of

SCALINGUNIT. Hence, the running times of Theorem 2.5.15 apply. We can derive even faster

running times, however, by reanalyzing the algorithm for this special case.

Theorem 3.2.2 If A* = P(log m), a flow such that A < A* + O(V/Tljg) can be found

by a randomized algorithm in expected time O(kmlogk + k3/2 (m + n logn)/vv4 -gn), and by a

deterministic algorithm in time O(k log k(k"nlog n + ink" + mlog n)).

Proof: We have shown that algorithm SCALINGUNIT finds the required routing if it is termni-

nated as soon as the granularity condition becomes false with a = 1. Now we analyze the time

required.

We begin with a call to UNIT. Recall that UNIT repeatedly calls REDUCE, and each call

reduces A by a factor of 2. Since each d, = 1 and there are k commodities, throughout the algo-

rithm 1 < A < k. Thus, there are 0(logk) calls to REDUCE. By Theorem 2.5.5, each call to RE-

DUCE consists of O(c-' maxi minJD,kd, ) calls to FIN DPATB. In this case, 0(c-1 Ima, min{Dkd0) =

O(r' ma.ximin {k,k} /1) = 0(c-k). Hence, UNIT consists of O(klogk) calls to FINDPATH,

when c is constant. The remainder of SCALINGUNIT consists of a series of calls to REDUCE,

each with c decreasing by a factor of 2. Hence, the time for the series of calls in the randomized

implementation is dominated by the time for the last iteration. The last iteration consists of

0(k) calls to FIN DPATH with c = e(\A0gi77). Since the total amount of flow in the network

is k, we have r- = O(A) = 0(k), and thus c 1 = O(V/7io ). In the deterministic implemen-

tation, we use the fact that there are at most 0(log V/l7In) = 0(log k) iterations, for a total

bound of O(klogk) calls to FINDPATH.

To derive the running times, we just need to plug in the time for FINDPATH. Using Lemma

2.5.8, Lemma 2.5.10, Theorem 2.5.12 and Lemma 2.6.13 for the times for FINDPATH yields the

theorem. U

3.2.1 Applications to VLSI routing

In this section, we discuss the problem of approximately minimizing channel width in VLSI

routing. Often, a VLSI design consists of a collection of modules separated by channels. The



3.3. SPARSE CUTS 87

modules are connected up by wires that are routed through the channels. For purposes of

regularity the channels have uniform width. It is desirable to minimize that width in order to

minimize the total area of the VLSI circuit. Raghavan and Thompson [51] give an approxima-

tion algorithm for minimizing the channel width. They model the problem as a graph problem

in which one must route wires between pairs of nodes in a graph G so as to minimize the

maximum number of wires routed through an edge. To approximately solve the problem, they

first solve a concurrent flow problem where there is a commodity with demand 1 for each path

that needs to be routed. An optimal solution fpt fails to be a wire routing only in that it

may consist of paths of fractional flow. The value of Ifoptl is certainly a lower bound on the

minimum channel width. Raghavan and Thompson give a randomized method for converting

the fractional flow fopt to an integral flow, increasing the channel width only slightly. The

resulting wire routing f achieves channel width at most

Ifopt I + O( 1-fopt Ilog n) (3.3)

which is at most wmin +O(rwmin log n), where wmin is the minimum width. In fact, the constant

implicit in this bound is quite small. Later Raghavan [49] showed how this conversion method

can be made deterministic.

Using Theorem 3.2.1, we can directly obtain an integral flow satisfying (3.3) and thus

solve the channel routing problem. This method is much faster than the original method of

Raghavan and Thompson. Our method does have a somewhat larger constant hidden in the

big-O of equation (3.3). However, by changing the constant in the granularity condition, we

can get a solution with a much smaller constant than the one given here, although not as small

as that of Raghavan and Thompson. In order to get a smaller constant factor in the quality of

the approximation, the running time of the algorithm increases by a constant factor.

3.3 Sparse Cuts

Another application of our concurrent flow algorithms k finding sparse cuts in graphs. The

computational bottleneck of these algorithms is solving a concurrent flow problem and its linear

programming dual. First, we summarize the previous sparse cut approximation results. Then



88 CHAPTER 3. APPLICATIONS OF MULTICOMMODITY FLOW

we show our concurrent flow algorithm can be used to find an approximately optimal dual

solution to the corresponding concurrent flow problems, in addition to finding a near optimal

flow. Finally, we shall give even faster running times for the special case of the sparse cut

problem where the input graph G has low maximum degree.

3.3.1 Review of Previous Results on Sparse Cuts

We begin by motivating the need for finding sparse cuts. One good method for solving graph

problems is to use a divide-and-conquer algorithm, which involves dividing the gra."' :rto two

pieces, solving the two pieces separately, and then patching the results back together. In many

graph problems, the number of nodes determines the difficulty of solving a problem, and the

number of edges going between the two pieces of the graph determines the cost of patching the

problem together. It is therefore desirable to split the graph into two roughly equal pieces, such

that the number of edges going between the two sides is small. Thus, to every (bi)partition of

the nodes of a graph, we can assign a value that measures how well we have achieved this goal.

While there are many ways we can formulate this metric, we describe one that is particularly

useful.

Let G be an undirected graph with capacities u on its edges. For a subset of the nodes A,

we use A to denote the complement of A. The associated cut is the set of edges 7(A) with one

endpoint in A and the other in A. Let u(F(A)) denote the sum of the capacities of the edges

in the cut. The metric we use is

03 = u(r(A))/(IAIIAI).

This value, 1, is small when the number of edges crossing the cut is small and when the two

sides are balanced. Leighton and Rao [43] gave an O(log n)-approximation algorithm for the

problem of minimizing the ratio 1 = u(r(A))/(IAIIAI) over all cuts.

Given the ability to find such cuts, many problems have been solved by using a divide-

and-conquer approach in the manner described in the first paragraph of this subsection. In

particular, this approach has yielded the first polylog-times-optimal approximation algorithms

for a wide variety of NP-complete graph problems. Leighton and Rao [43] showed how to use



3.3. SPARSE CUTS 89

these techniques to find approximately balanced separators. Combining the result of Leighton

and Rao with the results of Bhatt and Leighton [9], we obtain algorithms to approximate the

minimum cut linear arrangement, minimum area layout and v2--bifurcators of a graph. They

also showed how to approximate the minimum feedback-arc set. Hansen [27] has shown how

to extend these results to approximate some graph embedding problems, and Makedon and

Tragoudas [46] have extended some of these results to hypergraphs.

Consider the concurrent flow problem on G with one unit of demand between each pair of

nodes. The optimum value A* must satisfy

,\* . u(F(A)) >_ d(A, A) = IAIIAI (3.4)

for each cut r(A), where d(A, A) denotes the sum of all demands across the cut. Therefore, the

minimum value of u(r(A))/(IAIIAI) over all cuts 1r(A) gives an upper bound on 1/A\. Leighton

and Rao show that this minimum is within an O(log n) factor of the value 1/A°. Their algorithm

to find approximately sparsest cuts makes use of this connection. More precisely given a nearly

optimal length function (dual variables) they show how to find a partition A U B that is within

a factor of O(log n) of the minimum value of \, and hence of the value of the sparsest cut.

The computational bottleneck of the Leighton and Rao algorithm is computing a nearly op-

timal A and the corresponding near-optimal linear programming dual solution for the concurrent

flow problem on G with one unit of demand between each pair of nodes. The dual solution is a

non-negative length function I that maximizes the ratio F, disti(v, w)/(&.Z,,E u(vw)1(vw))

(see Theorem 2.2.2). Linear programming duality implies that this maximum is equal to A.

Leighton and Rao use a linear programming algorithm to find the length function.

A natural extension is the problem where we are given nonnegative node weights v(v) for

v E V in addition to the capacities on the edges. For a subset X of V let v(X) denote the

sum of the weights on the nodes in X. Consider the extension of the sparsest cut problem to

minimizing u(F(A))/(v(A)v(A)) over all cuts. The Leighton and Rao algorithm can be extended

to give an O(Iog n)-approximation algorithm for this problem. The corresponding concurrent

flow problem has demand between each pair of nodes, where the demand d(s, t) between nodes

s and t equals v(s)v(t). (If the weights are scaled so that the total node-weight is n, then the



90 CHAPTER 3. APPLICATIONS OF MULTICOMMODITY FLOW

main change to the Leighton and Rao algorithm is to select the node a for starting a tree with

v(s) maximum.)

Klein, Agrawal, RIavi, and Rao (33] extended the Leighton and Rao results to the case

of simple concurrent flow problems with integral capacities and arbitrary integral demands.

For a source-sink pair (s, t), let d(s, t) denote the corresponding demand. The minimum ratio

cut problem is to minimize the ratio u(r(A))/d(A, A) over all cuts. By inequality (3.4), the

minimum value of the ratio u(r(A))/d(A, A) is an upper bound on 1/A'. Klein, Agrawal, Ravi,

and Rao [33] proved that this upper bound is at most a factor of O(log nU log kD) more than

I/A* in general, and they gave an O(log nU log kD) approximation algorithm for the minimum

cut problem, where U is the maximum capacity and D is the maximum demand. Tragoudas [66]

has observed that their algorithm can be modified to give an O(log n log kD) factor instead.

Using this result, Klein et al. give approximation algorithms for chordalization of a graph,

register sufficiency, minimum deletion of clauses in a 2CNF - formula, via minimization

and the edge-deletion graph bipartization problems. Later Ravi, Agrawal and Klein [53] used

these techniques to give approximation algorithms for interval graph completion and a single-

processor scheduling algorithm. Similar to the Le .>.ton-Rao algorithm, the computational

bottleneck of their algorithm is solving the dual of the concurrent flow problem, i.e., finding

a length function I such that the ratio ,.tEv d(a, t)distt(s, t)/ &.cWE u(vw)t(vw) is close to

maximum.

3.3.2 Speeding up the Unit-Capacity Case

The computational bottleneck of the method of Leighton and Rao is solving a unit-capacity

concurrent flow problem in which there is a demand of 1 between each pair of nodes. In their

paper, they appealed to the fact that the concurrent flow problem can be formulated as a linear

program, and hence can be solved in polynomial time. A much more efficient approach is to

use our unit-capacity approximation algorithm. The number of commodities required is O(n 2 ).

Leighton [40] has discovered a technique to reduce the number of commodities required. He

shows that if the graph in which there is an edge connecting each source-sink pair is an expander

graph, then the resulting flow problem suffices for the purpose of finding an approximately

sparsest cut. (We call this graph the demand graph.) In an expander we have:



3.3. SPARSE CUTS 91

For any partition of the node set into A and B, where JAI _< IBI, the number of

commodities crossing the associated cut is e(IAI).

Therefore, for this smaller flow problem A = fl(IAI/u(r(A))). Since IBI 2! n/2, it follows that

nA = f(IAIJBI)/u(r(A))). The smaller flow problem essentially "simulates" the original all-

pairs problem. Moreover, Leighton and Rao's sparsest-cut algorithm can start with the length

function for the smaller flow problem in place of that for the all-pairs problem. Thus Leighton's

idea allows one to find an approximately sparsest-cut after solving a much smaller concurrent

flow problem. If one is willing to tolerate a small probability of error in the approximation, one

can use O(n) randomly selected source-sink pairs for the commodities. It is well known how

to randomly select node pairs so that, with high probability, the resulting demand graph is an

expander.

By Theorem 2.5.15, algorithm UNIT takes expected time O(m 2 log2 m) to find an appropriate

solution for this smaller problem. We then find a dual solution and run the rest of the algorithm

of Leighton-Rae. The dominant step, however, is the solution of the concurrent flow problem.

Theorem 3.3.1 An O(log n)-factor approximation to the sparsest cut in a graph can be found

by a randomized algorithm in O(m 2 log2 m) time. U

3.3.3 Speeding up the General Case

Finding Good Dual Solutions

The algorithms for finding sparse cuts in node-weighted edge-weighted graphs were discovered

by Klein, Agrawal, Ravi and Rao [33]. Similar to the algorithm of Leighton and Rao for

the unit capacity case, they first approximately solved a concurrent flow problem and then

used the edge lengths (dual variables) to guide the second phase of their algorithm. The

time consuming step of their algorithm is to solve their concurrent flow problem and find the

dual variables. They relied on the fact that a concurrent flow problem can be solved via

linear programming. In this section, we will show how to find faster solutions using algorithm

SCALINGCONCURRENT. Unfortunately, algorithm SCALINGCONCU RENT returns an c-optimal

solution for the formulation of the concurrent flow problem in which optimality is measured in

terms of minimum-cost flows. In other words, assume for a moment an infinite precision model



92 CHAPTER 3. APPLICATIONS OF MULTICOMMODITY FLOW

of computation. Then, by Lemma 2.2.4, the flow f and length function I returned by algorithm

SCALINGCONCUiE.ENT on an instance for which the optimal congestion is A\ are such that:

F___ >'A > -. ' (3.5)
].a I(vw)u(vw) 1 + (

The algorithm of Klein et al. needs a length function i, such that for some constant c > 0, this

function satisfies
- s) = EV d(s, t)disti(s, t) > (3.6)

E= ebE i(vw)u(vw) - 1 + (

In order to do so, we use the algorithm SCALINGCONCURLRENT to find a length function 1. We

show that with respect to this length function, we do not necessarily satisfy (3.5) but we can

show that
=1, C.(A)

EvwEEtCvw)u(vw)

is "close" to A. We then show how to modify this length function so that it satisfies (3.6).

Throughout this section we refer to the complementary slackness conditions for the minimum-

cost flow problem. These were given in Section 2.2, but we restate them here. Given an instance

for a minimum-cost flow problem M and a feasible flow fi then f, is optimal if and only if there

exists a price function p such that

cp(vw) > 0 Vvw E Ef, (3.7)

where Ef, is the set of edges in the residual graph Gf.

First, we consider the concurrent flow problem that directly corresponds to the given

minimum-ratio cut problem. We combine all commodities that share a source into a sin-

gle commodity as suggested in Lemma 2.2.1, which decreases the number of commodities to

k" < n. We shall index the resulting commodities by their sources. Given an error target

(, if our concurrent flow algorithm used the exact length function t, it would compute a flow

satisfying capacities A. u(vw) such that

Q= E,C;(A)

EvwEE I(vw)u(vw) - 1 +



3.3. SPARSE CUTS 93

But we actually compute flows with respect to an approximate length function 1, described

in the proof of Lemma 2.4.27. Let 0 denote the corresponding ratio with I replaced by 1 and

C, replaced by Ce. First we show that Q is almost as close to A* as Q.

Lemma 3.3.2 Let f be the flow and 1 be the length function returned by algorithm SCALING-

CONCURRENT. Then Q > 11*

Proof: Let y = c . e*A/(16mkU). Recall that -y is the factor that approximately relates the

real lengths to the approximate lengths. By the way the approximate lengths were computed,

yt(vw) _< 1(vw) for each edge vw E E. Also, by arguments similar to those used to derive

(2.22) we have

C,'- l," • cA$/(8k) < cA'@/(4k).

Using these two facts, we obtain the following bound on

-t E1.- :(A)
= VWEE7£(vw)U(vw)

- wEE E(vw)u(vw)

> E, C;(\) - CA EvwEE 1(vw)u(vw)/4

I1JUrEE '(vv')u(vw)

-EvEE t(VW)U(VW) -

-+c 4
A0

> 1 + 2c

The last inequality follows from c < Al

Now, we describe how to modify this length function to produce one that satisfies inequality

(3.6). Setting I = £ does not necessary work, since E,.tv d(s, t)distl(s, t) might be significantly

smaller than , C,(A). Instead of using i directly, we compute a new length function i.

Let A be the congestion of the flow returned by algorithm SCALINGCONCURRENT. For each

commodity s, we compute a minimum-cost flow for instance M. = (G, u- A,f, d,), that is, a
flow that is minimum with respect to costs i and capacities A. tu(vw) for each commodity. We

then use the optimal price function P3, (dual variables from the minimum-cost flow) to adjust i



94 CHAPTER 3. APPLICATIONS OF MULTICOMMODITY FLOW

by adding to it the sum of the absolute values of reduced costs for edges with negative reduced

costs.

Let 1; be the minimum-cost flow for instance M.t = (G, u.A, ,ad), and let • be the optimal

price function for this instance. We use 1o(vw) to denote the absolute value of the reduced cost

of edge vw if it is negative, and zero otherwise, i.e.,

t,(vw) = - min{O,e(vw) + P.(v) - P.(w)}. (3.8)

The complementary slackness conditions for the minimum-cost flow problem (3.7) imply that

if t,(vw) > 0 then !:(vw) = Au(vw). We define the new length function as i(vw) = 1(vw) +

F_ 4,(vw). We need the following lemma to estimate the numerator of R(i).

Lemma 3.3.3 Let j,* be the minimum-cost flow for instance M, = (G,u A,u , d), and let P.

be the optimal price function for this instance. Then f,0 is also the minimum-cost flow for instance

M' = (G,u. A,+ t,d). Further, the cost of I: in instance M' . is

Z (I(vw) + V(vw))j. = d(st)disti+,.(st).
t wEE

Proof: We prove the optimality of f0 by showing that f,* and the price function P, satisfy the

complementary slackness conditions (3.7) for instance M'. By the definition of 4, we have that

the reduced cost of edge vw, i(vw) + e,(vw) + P,(v) - P.(w), is nonnegative and it is positive

if and only if i(tw) + o.(v) - Po(w) is positive. By applying the complementary slackness

conditions to cost 1, flow j; and prices P,, we see that if this value is positive, then j.0 is zero,

and therefore, f, is minimum-cost for instance MA.

Now consider the cost of fo subject to the cost function i + t,. There are no edges with

negative reduced cost, and therefore the cost of the flow is at least E, d(s, t)(P.(t) - 0.(s)). All

edges that carry flow have zero reduced cost, which implies that the cost of the flow is equal to

Etho d(s,3t)( 34(t ) - and P,(t)i - ,(s) = disti+. (s,t). M

Theorem 3.3.4 R(i) > •



3.3. SPARSE CUTS 95

Proof: We shall estimate the numerator of R(I) using Lemma 3.3.3. For a source a we have

that

Sd(j, t)disti(s, t) >_•d(j, t)disti+l,.(a,t)
t I

- E(Ivw) + .a(vu))P. (VW)

'U,
-~~ C:E + .(vw)P1(VW).

By the complementary slackness conditions, and the definition of 1. in (3.8) we find that if

1•(vw) 6 0, then f,'(vw) = \u(vw). Summing over all sources yields

E d(s, t)disti(s,t) >_ E •• + \ E u(vw) 1: 1.(vw).
JIEV a VW 8

Dividing the two sides of this inequality by ' f(vw)u(vw) we have

R(i) • CE(A) + A , u(vw) E. (vw) (3.9)

E. u(vw)_(vw) + E U(vw) E. ,(VW)

Applying the fact that for positive a, b, x and A, if a/b < A then (a + xz)/(b + z) _> a/b, we see

that the left side of inequality (3.9) is at least Q which by Lemma 3.3.2 is at least A* /(1 + 2c).

U

Thus we have shown the following:

Corollary 3.3.5 An c-optimal flow and length function pair (f,I) produced by our concurrent

flow algorithm can be translated into a length function i needed by the minimum-ratio cut algorithms

in 0(k'nm log(n 2/m) log(nU)) time. The dual objective value associated with i is within a 1-O(f)

factor of the optimum.

Proof: The algorithm needs to perform k" minimum-cost flows. The time for a minimum-cost

flow comes from Lemma 2.4.29. U

We can use the approximate minimum-cost flow computation in Lemma 2.4.30 instead of

Lemma 2.4.29. With an argument similar to the above, but somewhat more involved, we replace

the log(n 2/m) in the theorem by a log log(nU). We obtain the following corollary.



96 CHAPTER 3. APPLICATIONS OF MULTICOMMODITY FLOW

Corollary 3.3.6 An O(log n)-approximation to the node weighted cut problem with general

capacities can be found in O(n 2 m log nU log2 n min {log(n 2/m), loglog nU}) expected time. An

O(log n log kD) -approximation to the minimum-ratio cut problem with general demands and ca-

pacities can be found in O(k" nm log nU log k log n min {log(n 2/m), log log nU}) expected time.

An analogous theorem can be obtained for finding approximately sparsest cuts in hypergraphs

using the concurrent flow algorithm in conjunction with the approximation algorithm of Make-

don and Tragoudas [46].

3.3.4 A Faster Algorithm for Low Degree Graphs

In this section, we improve the running time given in Corollary 3.3.6 for low-degree graphs G.

The new running time depends on A, the maximum degree of any node in the graph G.

We consider the following minimum-ratio cut problem for graphs with unit demands,

Problem MR1: Given an instance I where each commodity i has di = 1 and the graph that

has an edge between the source and sink of each commodity is a constant degree expander on

V. (We call this graph the demand graph.)

While Problem MRI may seem like an obscure special case, it is in fact an important one.

The Leighton and Rao [43] algorithm uses the solution of a concurrent flow problem in which

the demand graph is the complete graph. As mentioned in Section 3.3.1, one can modify the

Leighton and Rao algorithm to use the solution to this new concurrent flow problem and its

dual problem to derive an O(logn) approximation to the minimum-ratio u(r(A))/(IAIIAI) over

all cuts. To get an idea how the two problems are related consider a cut F(A) and assume that

JAI < IAI. Since the demand graph is a constant degree expander, clAl <_ d(A, A) <_ 61AI for

some constants c and e. Therefore,

u(r(A)) = (u(•A(A))\
d(A, A) J

But since by assumption, IAI < JAI, we know that n/2 < JAI _< n. Therefore, u(F(A))/d(A, A)

is e(n) times more than u(r(A))/(IAIIAI).

The first step in solving problem MR1 is to round all edge capacities up to integer multiples

of a parameter p in such a way that the ratio u(F(A))/(IAIIAI) is not changed by more than



3.3. SPARSE CUTS 97

a factor of two. Notice that 1F(A)I _• AIAI. We shall use r to denote the maximum of

Ir(A)I/d(A, A) over all cuts r(A). Notice that r < A/c, where c is the expansion parameter of

the demand graph.

Theorem 3.3.7 Let \* be the optimum value of the concurrent flow problem MR1, and let

p 5 (rA)-. If we round each capacity u(e) up to fi(e), the next integer multiple of p, then

the minimum value of i(r(A))/(IAIIAI) over all cuts is at most twice of the minimum value of of

fi(r(A))/(IAIIAI) over all cuts r(A).

Proof: For all cuts r(A), it must be that \'u(r(A)) _Ž d(A, A). The rounding error ft(l(A)) -

u(J(A)) is at most uJIF(A)l < Ir(A)I(2r \)- 1 < d(A,A)I/A" < u(r(A)). Thus for each cut

f(r(A)I/(IAIIAI) < 2u(r(A))/(IAIIAI), i.e., the new ratio is at most twice the old ratio. N

Rounding to integer multiples of p preserves the minimum-ratio cut up to a factor of 2. If

we want to preserve \* up to a constant factor we must perform a somewhat finer rounding.

Theorem 3.3.8 Let A\ be the optimum value of the concurrent flow problem MR1 and let

p _5 E(20rA* log mU log n)- 1. If we round each capacity u(e) up to fi(e), the next integer multiple

of p, then the minimum congestion )" subject to capacities fi is at most \*/(1 + C), where \) is

the minimum congestion subject to capacities u.

Proof: The idea is to use the O(log n log kD) approximation result of Klein, Agrawal, Ravi,

and Rao [33] as improved by Tragoudas [66]. Klein et al. show that the minimum value over

all cuts u(l'(A))/d(A, A) is within an O(log n log kD) factor of the value of 1/A\. Consider

the following auxiliary concurrent flow problem. The graph is G with capacities u. For each

edge vw E E there is a demand of value d(v, w) = fi(vw) - u(vw) from v to w. Observe

that the demands in the auxiliary problem are integral and at most u, and logp is at most

log(cmU/(?Or log nU log n)) <_ 2 log(mU). Using the same estimates as in the proof of Theorem

3.3.7 we can conclude that the minimum of u(1F(A))/d(A, A) over all cuts 17(A) is at most

c/(20 log mU log n). By the approximation result of Klein et al. the minimum congestion \*

for this problem is at most c. That is, the added capacities can be routed in an c-fraction of

the original capacities u.

Now consider an optimal flow f of congestion A" in the rounded problem. To get a solution

in the original problem, we route the part of flow f that uses the aA~ded capacity in the way



98 CHAPTER 3. APPLICATIONS OF MULTICOMMODITY FLOW

this demand is routed in the optimal solution to the auxiliary problem. The additional flow

does not increase the congestion by more than a factor of 1 + C. U

Next consider the question of how long it takes to solve a rounded concurrent flow problem.

For simplicity we shall restrict our attention to the case when c is a constant. The number of

commodities is 0(n). The capacities in the minimum-cost flow problem are integer multiples

of At&. We shall use algorithm SCALINGCONCURRENT with a suitable choice of minimum-cost

flow routine. We shall use the minimum-cost flow algorithm due to Ford and Fulkerson [29] and

Yakovleva [71], that repeatedly augments the flow along the shortest path in the residual graph,

to solve these problems. Given a concurrent flow with congestion A, the number of shortest

path computations in a minimum-cost flow subroutine is at most the demand divided by the

unit of capacity, rounded up, that is, the number of minimum-cost flow computations is at most

We use these ideas to solve the minimum-ratio cut and the concurrent flow problem. The

O((A- 1p- 1 + 1)(m + n log n)) time required for solving the minimum-cost flow problem might

not dominate the 0(m log n) needed to compute the approximate length function. To simplify

the bounds we shall count each minimum-cost flow computation as O((A-1p- 1 + 1)mlogn))

time. These bounds can be further improved by using the data structures described in Section

2.5.5, but we do not pursue that here.

The running time that we wish to achieve is greater that the time it takes to find an initial

flow using the k maximum-flow computations suggested in Lemma 2.4.2. The capacities of this

problem are not rounded, therefore we have to use a general maximum-flow algorithm. A]] such

algorithms take, up to logarithmic factors, Q(mn) time. An initial flow that is optimal up to a

factor of O(km) can be computed in O(km) time by routing each commodity on the path with

maximum bottleneck capacity from its source to its sink.

An iteration of the algorithm uses the rounding described Theorem 3.3.7 with A = c(AA0)-'.

We terminate the iteration if A decreases below AO/2. At that point we divide A0 by 2, and

start the next iteration. We use the flow obtained in the previous iteration as our initial flow.

Theorem 3.3.9 An O(log n)-approximation to the minimum ratio u(I(A))/(fAf(A() over all cuts



3.3. SPARSE CUTS 99

r(A) in a graph with capacities u and maximum degree A can be computed in O(nmA log 3 n)

expected time.

Proof: By Theorem 2.4.20, we need to perform O(k log n log k) minimum-cost flow problems,after

initialization. One iteration takes O(A'-jp-m log n) = O((cA + 1)mlogn) time, which yields

the result. l

The proof of the following theorem is the same as the proof of the previous theorem

with the rounding from Theorem 3.3.7 replaced by that of Theorem 3.3.8 and with p -

cc(20AAO log mU log n)-').

Theorem 3.3.10 For any constant c, an c-optimal solution to a unit demand concurrent flow

problem in a graph with maximum degree A and with a constant degree expander demand-graph

can be computed in O(nmA log4 nlognU) expected time.

In regular graphs nA = m, and therefore the running times of the above two algorithms for

problem MR1 are, up to polylogarithmic factors, 0(m 2 ).



Chapter 4

Implementing Multicommodity Flow

Algorithms'

4.1 Introduction

In this chapter we describe an implementation of algorithm SCALINGCONCURRENT. Ini Section

4.2 we will discuss some of the previous implementations of multicommodity flow algorithms.

In Section 4.3 we discuss some of the decisions we made. In Section 4.4, we analyze the running

time of our implementation and make some comparisons to a linear programming algorithm.

4.2 Previous Results

All previous implementations of algorithms for the concurrent flow problem with general ca-

pacities that we are aware of rely on linear programming. An instance M of the concurrent

flow problem can be expressed as the following linear program:

'This chapter describes joint work with Tishya Leong and Peter Shor [44].

101



102 CHAPTER 4. IMPLEMENTING MULTICOMMODITY FLOW ALGORITHMS

minimize A

subject to

_ f,(wv)- E f,(vw) = 0, for every node v {,,t,),
w•EE wwEE

F f,(vw) = d, for v = s,,i 1,..., n;
tVEE

E f,(wv) = d, for v = ti,i= 1,...,n;
wt'EE

k

f,(vw) A u(vw), Vvw E E;
i=1

fi(vw) > 0, VvwE E, i= 1,...n (4.1)

This linear program has O(mk) variables and O(nk + m) constraints. Even for a graph with

average vertex degree A, there are O(Ank + ink) = O(mk) non-zero entries in the constraint

matrix. Thus the size of the linear program is fairly large compared with the size of the input.

In particular, both the number of constraints and the number of variables grows linearly in k.

The large size of the linear programs makes the general simplex algorithm impractical for all

but very small problems. Some algorithms that take advantage of the special structure of mul-

ticommodity flow problems have been proposed. These algorithms fall into three main classes:

price-directive decomposition, resource-directive decomposition, and partitioning approaches.

More recent approaches include interior-point methods [1] and a combinatorial scaling algorithm

[54]. All of the aforementioned algorithms solve multicommodity flow problems using one of

two different objective functions. Some find a minimum-cost multicommodity flow, while others

find a flow that maximizes the total amount of flow in the network. A detailed description of

these approaches requires a knowledge of linear programming that is beyond the scope of this

thesis. We refer the reader to the surveys of Assad [5] and Kennington [31] and the thesis of

Schneur [54] for more information on these approaches.

We are aware of two implementations of algorithms for the unit-capacity unit-demand con-

current flow problem. Shahrokhi and Matula [59] report encouraging results for an implemen-



4.3. AN IMPLEMENTATION 103

tation of their algorithm. Klein, Kang and Borger [34] have implemented a variant of the

algorithm of Klein, Stein and Tardos [36] which is essentially the algorithm SCALINGUNIT. Ini-

tial comparisons to the algorithm of Klein et al. show that, as expected, our algorithm performs

fewer iterations, but take more time to perform each iteration.

4.3 An Implementation

We now describe how we have adapted and implemented Algorithm SCALINGCONCURRENT. We

made some modifications to the algorithm for the purpose of improving actual perfoi mance.

We describe the changes we have made and the motivations behind them. We also point out

areas in which our modifications could be fine-tuned with further research. First we will focus

on a few of the more interesting and important aspects of our implementation.

4.3.1 Grouping Commodities

The grouping of commodities is suggested in Lemma 2.2.1. We place all commodities with

the same source into one commodity group and run the algorithm on the commodity groups

instead of on the individual commodities. Grouping has two advantages. First, the running

time, which varies linearly with k, now depends on the number of commodity groups rather

than on the number of commodities. For problems with large numbers of commodities, the

favorable dependence on k means a significant reduction in running time. Second, because our

algorithm uses O(km) space, commodity grouping also reduces the space requirement by up to

a factor of n. In practice, this advantage probably outweighs the previous one. We have been

able to solve problems through the use of grouping that were not solvable without grouping,

due to the memory limitations of the particular machine. We also note that the minimum-cost

flow code that we used is written to handle multiple sources and sinks, so grouping does not

create any added complexity. The advantages gained by grouping commodities have also been

documented by Schneur [54].



104 CHAPTER 4. IMPLEMENTING MULTICOMMODITY FLOW ALGORITHMS

4.3.2 Choosing a Commodity to Reroute

Recall that algorithm SCALINGCONCURRENT uses either a deterministic strategy or a ran-

domized strategy for choosing a commodity group (or a commodity) to reroute. Let fI be

the current flow of commodity group i and let f,' be the minimum-cost flow for problem

M = (G,u. A,1,di). Then the deterministic method, described in Lemma 2.4.11, com-

putes the cost C, = •VWEE Jf,(vw)If(vw) of a commodity group i, its minimum cost C,' =

E,,EE IJf(vw)jt(vw), and the difference C, - C,' between its cost and the minimum cost. The

commodity group to be rerouted is the f -st &-bad one found in a predetermined ordering, in

other words, the first one which has a difference Ci - C,. greater than cC, + (cX§)/k*. This

method requires k" minimum-cost flow ccmputations per iteration in the worst case. The ran-

domized strategy computes the cost C, of each commodity group i and randomly chooses a

commodity group with probability proportional to cost. This method uses an expected c-

minimum-cost flow computations per iteration. Once every k" iterations, minimum-cost flows

are computed for all the commodity groups, and the congestion \ is checked against the lower

bound ,= \ C'()/O to decide if the algorithm should terminate. This check increases the num-

ber of minimum-cost flow computations by at most a factor of 2. Our selection strategy draws

from both the deterministic and :he randomized methods and from the termination check.

To make the most progress per iteration, we attempt to find not only a poorly routed

commodity group but the most poorly routed commodity group. We may designate as the

most poorly routed commodity group either the group with the highe-t cost Ci or the group

with the largest difference C, - C, between cost and minimum cost. Using either measure and

rerouting larger fractions of flow than the a in Lemma 2.4.8 we have found that an algorithm

that deterministically reroutes the most poorly routed commodity group sometimes gets stuck

rerouting a single group over and over with no decrease in the congestion. We have also found

that when it does not get stuck, such a deterministic algorithm usually progresses faster than

a randomized algorithm. We therefore use a partly deterministic, partly randomized selection

strategy in which we alternate between k*/2 iterations of deterministic selection and k'/2

iterations of random selection. By taking advantage of the minimum-cost flow computations

performed in the termination check every k" iterations, we can select commodity groups to

reroute without computing extra minimum-cost flows. We reroute, in decreasing order, the



4.3. AN IMPLEMENTATION 105

k*/2 groups with the greatest difference between cost and minimum-cost followed by kV/2

randomly chosen commodity groups. To prevent domination by a limited number of groups,

the random selection weights all commodity groups equally as proposed by Goldberg [20] and

Grigoriadis and Khachiyan [26]. Note the savings over the theory here. We compute the costs

once and then perform several reroutings. By the time that we actually reroute a commodity, it

might be the case that that commodity is no longer (-bad. The savings gained by not having to

recompute costs at each iteration more than compensates for the extra reroutings performed.

4.3.3 Implementing the Minimum-cost Flow

Once the algorithm has chosen a commodity group to reroute, it must find an appropriate

minimum-cost flow. For this purpose, we use the RELAXT-111 minimum-cost flow code of Bert-

sekas and Tseng [8]. One drawback of the routine we have chosen is that it requires integer

capacities, costs, and demands, making preprocessing and postprocessing necessary each time

it is called. Another routine might better suit our algorithm, but we concentrate mainly on the

number of iterations of our algorithm and treat the minimum-cost flow routine as a black box.

For the costs used to calculate the minimum-cost flow, we use a slightly different length

function from that proposed in Algorithm DECONGEST. Instead of setting the length £(vw)

of each edge vu, E E equal to e*A(VW)/u(vw). we use a length function in which £(vw) =

[eo(•(vw)-)+eJ, where c is a scaling constant that depends on the largest integer the system can

handle. (Note the similarity to the techniques used in Section 2.4.2.) We include the terms

-A and c because we want to extract real flows from a routine that works only with integers.

These terms spread the lengths over the range of viable non-negative integers, giving us the

most accurate minimum-cost flow we can procure. We have removed the u(vw) factor so that

edges with equally high congestion have equally high cost in the minimum-cost flow. We have

found through limited experimentation that this strategy produces minimum-cost flows which

better suit our algorithm.

4.3.4 Choosing Constants and Rerouting

As is evident from the analysis of SCALINGCONCURRENT in Chapter 2, the constant a and the

fraction a of flow rerouted greatly affect the running times of the algorithm. The values used



106 CHAPTER 4. IMPLEMENTING MULTICOMMODITY FLOW ALGORITHMS

in algorithm DECONGEST are very large for a and very small for o. The constant a can easily

exceed 1000, and a can easily fall below 10-i. For the algorithm to progress at a reasonable

rate in practice, given the fixed precision of computers, we need to use smaller values for a

and larger values for a. As the algorithm progresses, however, we need to use a larger a and

a smaller o (see the description of DECONGEST for details). We control the rate of growth of

a and a by means of a scaling factor a. We set a equal to c' • /,A, where c' is the constant

c - log m. Here c is chosen to be the largest value z such that m. e', the largest possible value

of the potential function, does not cause overflow. One key to making progrzab is to decide

when to decrease s.

To decide how much flow to reroute, we sample the values that the potential function 4'

would take after rerouting various fractions of flow. We do not need to restrict ourselves to a

value of a that guarantees improvement in every iteration, we only need to choose a value that

guarantees us improvement in that particular iteration, thereby allowing for the possibility of

rerouting much larger fractions of flow than in procedure REDUCE. In fdct, we can try to choose

the best possible value for a, i.e., the one that gives the greatest reduction in f. We can find

a efficiently because t is a concave function.

More precisely, we take advantage of the following:

Lemma 4.3.1 Let f be a flow and f," be the minimum-cost flow computed by procedure DE-

CONGEST. Let 4'(o) be the value of the potential function after rerouting a a' fraction of the flow

from f, onto fiJ. Then '(a') is a concave function with respect to a'.

Proof: We will prove the lemma for the potential function given in Chapter 2. We shall use

the notation exp(z) to denote el. Recall that

4)= Z u(vw)t(vw)
'w•EE

vwEE

vwEE i=1



4.3. AN IMPLEMENTATION 107

Thus after rerouting a units of flow

#()= E exp a (~ f(~IVW~A +(-ff)f,(vtv)+f*V (4.2)

iVWEE ( kL**W) IJJ + (1+O~ iij(42

Observe that for each edge vw, the quantity exp (•-O (F,, lf,(vw)[)), which we denote

by Q(vw), is independent of a and is always positive. We use S(vw) to denote the sign of

(1 - a)f,(vw) + af*(vw), i.e., S(vw) = 1 if that quantity is positive and -1 otherwise. W. can

now rewrite equation (4.2) as

f(a) = E Q(vw)exp O (VW) ((1 - a)f,(vw) + afli(vw))). (4.3)
vwCEE(U(

We can now take the first derivative of $(o) with respect to a,

E (Q(vw) exp (a (vw) ((1 - o')f.(vw) + af,'(vw))) cS(vw)(.fvw+ f(vw))) ,

and the second derivative

F, (Q(vw)exp O(vw) ((1 - a)f,(vw) + 'f*(vW))) ( VW )2 (-A+( )) fi(vw))'

(4.4)

Now observe that the multiplicands in (4.4) are all positive, and hence the second derivative is

always positive and the function is concave. Note that it is also true for the 0 that is used in

practice as this 4' can be written is the 4t here with each term multiplied by a positive constant.

N

Since 4' is concave, we know that it has at most one local minimum. Thus if we search

for the minimum by sampling 5 equally spaced point, we know that we can always eliminate

1/4 of the possible values at each iteration. Thus we can efficiently find the minimum, or at

least a point close to the minimum. We sample fractions to the precision .001/s2, and we also

use this value as a floor a0 min on the fraction of flow that can be rerouted. To avoid wasting

time rerouting small amounts of flow, we reroute a commodity only if a is at least as large as

amin. We know that we may have to reroute fractions as small as O(c/aA), and so we must

decrease amin faster than we increase a to lower the minimum value for a. We begin with s



108 CHAPTER 4. IMPLEMENTING MULTICOMMODITY FLOW ALGORITHMS

equal to .25 and raise it by .25 whenever the maximum fraction rerouted in k" iterations is less

than -m,,/(a • k*) or whenever the ratio of the congestion \ to its lower bound z_._" Ci(o)/

increases after k" iterations. We have found that this strategy works well in most instances but

scales a too fast in a few instances, slowing the algorithm too much for practical use. In such

cases, we rerun the algorithm, scaling a more slowly. We have not yet discovered the optimal

rate at which we should scale a, nor have we discovered exactly when we should scale it. This

is the area in which our algorithm would benefit most from further research. Other areas in

which it could be further improved include the selection strategy for commodities to reroute

and the technique for choosing amin

4.4 Experimental Results

We have tested our algorithm on a variety of problems and compared its performance to

the theoretical bounds. We used two different random network generators, NETGEN[37] and

R.MFGEN[23]. R.MFGEN generates graphs that have a set of square planes with connections be-

tween adjacent planes. When we refer to a graph generated by NETGEN, we will indicate the

number of planes. When run on random NETGEN and RMFGEN graphs with randomly placed

commodities, our algorithm behaved more or less as expected. It took polynomially in C 1

more time to get closer to the optimal solution and less than linearly in k" more time to handle

larger numbers of commodities. Furthermore, for large numbers of commodities, our algorithm

outperformed the linear programming-based code of Kennington. Our algorithm performed

poorly on one real problem provided by the GTE Corporation, but as we explain in Section

4.4.5 we consider this an anomaly arising from a limited number of unusually time-consuming

minimum-cost flow computations. This one instance aside, we find our results encouraging

and consider it an improvement, in many cases, over the simplex-based algorithms that have

preceded it.

4.4.1 Dependence on the Error Parameter

The theory predicts an inverse polynomial dependence of the running time on the error param-

eter c. More precisely, it states that the number of minimum-cost flow computations depends



4.4. EXPERIMENTAL RESULTS 109

on c-1. Since our algorithm computes a constant number of minimum-cost flows per itera-

tion, the number of iterations should also depend on C- 2 . Equivalently, e should depend on

1/V0# of iterations.

We ran our algorithm on various problems and graphed the lowest c achieved against the

number of iterations completed. Each run stopped at a final t of .001 or less. To compress the

data, we used data points representing ranges of iterations. For each problem, we considered

10 runs and, for each run, the minimum t achieved at each termination check. The aggregate

i for a range equaled the average of the minimum c values found at the termination checks

falling in the range during each of the 10 runs. We examined a problem with 20 commodities

and four problems with 10 commodities using different NETGEN graphs with 50 nodes and 100

edges. We also examined two problems with 10 and 20 commodities, respectively, using an

RMFGEN graph with 140 edges and 48 nodes (spread evenly over 12 square planes). To test a

large problem, we examined a single run on a large RMFGEN problem with 700 commodities,

2075 edges, and 500 nodes (spread over 20 square frames). For all these problems, we graphed c

versus the number of iterations. We also graphed the function 1 /V/# of iterations on which we

expected c to depend. As is evident from Figures 4.5 through 4.11, our implementation always

performed better than the expected bounds. Some inconclusive attempts at fitting the data to

a curve of the form a * (# of iterations)' + c using a regression package lends some additional

support to this conclusion as typical values of b were between -. 5 and -1.

4.4.2 Dependence on the Number of Commodities

With respect to the number of commodities k, our algorithm also seems to conform to the

theoretical bounds. Using 10 runs for each data point, we graphed the average number of

iterations needed to solve problems with variable numbers of commodities given a fixed graph.

In Figure 4.12, we examined four NETGEN graphs with 50 nodes and 100 edges and values of

k between 10 and 70. In Figure 4.13, we traced the same values of k using an RMFGEN graph

with 140 edges and 48 nodes (spread over 12 square planes). In Figure 4.14, using values of

k between 50 and 250, we examined an RMFGEN graph with 752 edges and 192 nodes (spread

over 12 square planes). Graphing the number of iterations against the number of commodity

groups k" < k, we observed that the number of iterations either grew linearly or grew linearly



110 CHAPTER 4. IMPLEMENTING MULTICOMMODITY FLOW ALGORITHMS

to a peak and then dropped. The drops may result from larger numbers of commodities making

it possible to route commodities over a smaller number of paths and over shorter paths. In

trying to find flows that give the edges equal congestion, the algorithm has more commodities

at its disposal to congest each edge. In any case, the number of iterations grows no more than

linearly with the number of commodity groups and therefore no more than linearly with the

number of commodities.

4.4.3 Comparison to Other Algorithms

Because the running time of our algorithm grows no more than linearly with the number

of commodities, it can effectively solve large concurrent flow problems. To the best of our

knowledge, our implementation is the first for an algorithm that finds an E-optimal solution

to the general concurrent flow problem. Consequently, comparisons to existing algorithms

inherently contain some amount of bias. We have nevertheless compared our algorithm to

another as best we could. The fact that our algorithm runs faster than another on a particular

problem instance does not necessarily mean our algorithm is faster in general. The comparison

reveals sufficiently consistent trends, however, that enable us to draw some general conclusions.

We begin with a brief discussion of the algorithm to which we have compared our algorithm.

The algorithm is MCNF85, a special purpose simplex code for multicommodity flow problems

written by Kennington [32]. We chose it for two reasons. First, we had access to the code

on our machine. Second, and more importantly, previous tests by Adler, Karmarkar, Resende

and Veiga [1] demonstrate its efficiency. Adler et al. compared three different codes for multi-

commodity flow: MINOS 5.0, which is an advanced implementation of the simplex method [47],

MCNF85, and their own interior point method. Their experiments show that the running time

of MINOS grows much faster than that of the other two algorithms and that, for the problems

they tested, MCNF85 and the interior point algorithm have comparable running times. Thus

we concluded that McNF85 was one of the best codes available at that time. Several people,

however, have pointed us towards codes, particularly interior point codes, that may possibly

be better than MCNF85 on this class of problems. We are in the process of comparing our

algorithm against these other codes and will report the results when they become available.

We faced two obstacles in comparing our algorithm to MCNF85. First, our algorithm finds



4.4. EXPERIMENTAL RESULTS 111

an approximate solution while MCNF85 finds an exact solution. Since we did not possess the

programming skills needed to modify MCNF85 to alleviate this problem, we ran our algorithm

to both e = .01 and c = .001 before comparing it to MCNF85. The second difficulty in making

the comparison is that the algorithms are designed for different objective functions. By using

an objective function of 0 for MCNF85 and a cost of 0 on each edge, we can treat it as an

algorithm that determines whether a feasible multicommodity flow exists. We could then call

this algorithm O(log(nc 1 )) times to find an c-optimal solution to a concurrent flow problem,

but to do so seems too far from the original purpose of the algorithm for fair comparison.

Instead, we ran our algorithm to find the maximum z for which there exists a feasible flow

satisfying a percentage z of each demand. We then scaled the demands by z to get a problem

that we knew to be feasible. This problem corresponds to the problem that MCNF85 would

have to solve in the last iteration of the binary search procedure defined above. We compared

a run of our algorithm to a run of MCNF85 with the input modified as described above. We

could better evaluate our algorithm by comparing it to other approximation codes for the same

problem. As mentioned above, however, we could not make such a comparison because we do

not know of any such codes.

4.4.4 The Results

The results of our experiments appear in Figure 4.1. The experiments in this table were

performed on a Silicon Graphics 4D/340S. They show that as the number of commodities

increases, the running time of MCNF85 grows much more rapidly than the running time of our

algorithm for graphs of all sizes. The difference does not arise simply because we group the

commodities (they could incorporate grouping in their algorithm too). Hardly any grouping

occurred in the graphs with 500 nodes and 70 or less commodities, and the running time of

our algorithm still grew much more slowly than the time for MCNF85. In fact, as discussed

above, the running time of our algorithm grows slower than k while rough analysis of the data

shows that the time for MCNF85 grows at least as fast as k2 . We show two examples graphically

in Figure 4.2 and 4.3. Since the size of the linear program grows by k2, this growth is not

particularly surprising.

Our algorithm will be able to solve large and previously unsolvable multicommodity flow



112 CHAPTER 4. IMPLEMENTING MULTICOMMODITY FLOW ALGORITHMS

Problem Specification Kennington Our algorithm

nodes edges commodities generator f = .01 f = .001

50 100 20 NG 49 20 103

50 100 50 NG 397 35 43
50 100 70 NG 857 29 33

48 140 10 RMF 8 13 13

48 140 20 RMF 24 23 23
48 140 30 RMF 69 18 35

48 140 40 RMF 122 25 38

48 140 50 RMF 216 21 71

48 140 60 RMF -316 40 61

48 140 70 RMF 470 45 62

500 2075 10 RMF 87 831 5230

500 2075 20 RMF 608 1484 2641

500 2075 30 RMF 1831 2625 3881

500 2075 40 RMF 6571 3762 6084

500 2075 50 RMF 15601 4710 7401

500 2075 60 RMF 18449 3819 6201

500 2075 70 RMF 34362 4435 8258

500 2075 700 RMF 22411

192 748 50 RMF 2702 240 589

192 748 250 RMF 85754 637 1571

49 260 585 none 1373 2472

1_ , (estimate)

Figure 4.1: Running time comparison of our algorithm and Kennington's algorithm. Running
times are in seconds on a Silicon Graphics machine. NG is NETGEN and generator RMF is
RMFGEN. The last problem is the problem defined in Section 4.4.5



4.4. EXPERIMENTAL RESULTS 113

50 node, 200 edge, RUFOEN graph

400-

v 300-I200-
100-

10 20 30 40 50 60 70

commodities

IMCNF85 -- 0-us, epsilon - .001 -*- us, epsilon - .01

Figure 4.2: A comparison between our algorithm and MCNF85. This problem has 50 nodes
and 200 edges.

500 node, 2075 edge RMFGEN graph

35000

30000

25000I20000
10000

5000

10 20 30 40 50 60 70

commodities

IMCNF85 us. epsilon - .001 - us, epsilon *.01

Figure 4.3: A comparison between our algorithm and MCNF85. This problem has 500 nodes
and 2075 edges.



114 CHAPTER 4. JMPLEMENTING MULTICOMMODITY FLOW ALGORITHMS

Problem Specification c % of time finding

nodes edges commodities generator Min-cost flows

50 100 20 NG .001 49.9

50 100 50 NG .001 50.5

50 100 70 NG .001 43.6

48 140 30 RMF .001 44.1

48 140 40 RMF .00! 44.1

48 140 50 RMF .001 42.4

48 140 60 RMF .001 44.7

48 140 70 RMF .001 47.7

500 2075 10 RMF .01 87.3

500 2075 30 RMF .01 79.7

500 2075 40 RMF .01 73.3

500 2075 50 RMF .01 76.8

500 2075 60 RMF .01 80.7

500 2075 70 RMF .01 77.7

192 752 50 RMF .001 55.8

192 752 250 RMF .001 59.0

49 260 585 none .01 99.8

Figure 4.4: Percentage of Time that our algorithm spent performing minimum-cost flows. The
data is gotten from the UNIX profiling routine prof. NG is NETGEN and generator RMF is
RMFGEN. The last problem is the problem defined in Section 4.4.5.

problems. We have already shown that we can solve a 700 commodity problem faster than

MCNF85 can solve a 70 commodity problem. For large graphs with small numbers of com-

modities, our algorithm is slower than MCNF85. The rapid growth rate of MCNF85, however,

with respect to the number of commodities makes our algorithm more desirable for problems

with more than a few commodities. As discussed in Chapter 3, one of the motivations for this

work comes from multicommodity flow problems that arise in approximating various NP-hard

problems. (See [43],[33],[35], and [42] for details.) These problems have large numbers of com-

modities, i.e., at least as many commodities as the number of nodes. Our algorithm provides a

practical means for solving such problems.

4.4.5 An Anomaly



4.5. CONCLUSIONS AND OPEN PROBLEMS 115

In one case, a problem with 49 nodes, 260 edges, and 585 commodities using actual data

from GTE, our algorithm performed much more poorly than the linear programming algorithm.

Though our algorithm ran for only 3745 iterations, a reasonable number, those iterations took a

total of 18.4 hours of CPU time. We attribute this anomaly to inefficiency in the minimum-cost

flow routine since minimum-cost flow computations accounted for over 99.8% of the running

time. The theory shows that minimum-cost flow computations dominate the running time of

the algorithm, but even for the much larger RMFGEN graph with 500 nodes and 1025 edges,

minimum-cost flow computations generally took less than 80% of the time. For small graphs,

they generally took between 40 and 50 percent of the time. See Figure 4.4 for a mnre detailed

description of the times. The time spent solving the GTE probler was not equahy divided

between iterations. Iterations including the termination check asid,, most iterations took less

than 100 milliseconds. Some iterations, howeve7, took hu.. 'reds of seconds, up to 1000 times

the normal duration.

With the help of several other researzhe, s, we have verified that these are problems on

which RELAXT-I1I takes an inordinately long amount of time. Several people have run these

problems on their codes arnd observed ao anomalous behavior, i.e., the running times for this

set of problems are all al --oxi'nately the same. In order to estimate a more realistic running

time for t' , problem, we. ,,pute an upper bound on the what the running time would have

A. we were using the RNET code of Grigoriadis. Joseph Cheriyan [10] has reported that on a

representative sample of these minimum-cost flow problems, the running time of RNET on a

jPARC2 (which is miower than our machine) never exceeds 0.66 seconds. Using the estimate

tl• t 50% (see Figure 4.4) of the time is spent in the minimum-cost flow computations, we arrive

at a figure of 2472 seconds as a "reasonable" upper bound on the running time of this instance.

4.5 Conclusions and Open Problems

Our algorithm performs as well as, and often better than, the theoretical bounds. The theory

predicts the number of iterations of the algorithm to be O(c 2k). Our experiments show that

the number of iterations often grows slower as a function of c. Our experiments also show that

for small k, the number of iterations does increase linearly with k. As k approaches the number



116 CHAPTER 4. IMPLEMENTING MULTICOMMODITY FLOW ALGORITHMS

of nodes, however, the number of iterations grows at most linearly and sometimes actually

decreases.

On the problems we tested, the running time of our algorithm grew much slower as a

function of k than that of Kennington's algorithm, thereby implying that our algorithm is

preferable to one of the best network simplex based approaches for problems with large numbers

of commodities.

The performance of our algorithm was heavily influenced by our choice of when to scale a.

We tested several strategies and found that different strategies performed better for different

problems. We therefore believe that more work is needed to find a strategy that works well for

all problems.

Our algorithm might be improved by using a different minimum-cost flow algorithm. In fact,

we do not require the exact solution to a minimum-cost flow but only an approximate solution.

An algorithm that is able to find fast approximations to a minimum-cost flow might significantly

improve the running time of our algorithm. Also, the minimum-cost flow problems we solve for

the same commodity might have similar solutions. Using the solution to the previous problem

as a starting point for the new problem might improve the running time.

We are aware of two other implementations of combinatorial algorithms to which we should

compare our algorithm. The first, by Shahrokhi and Matula [59], works only for graphs in

which every capacity and demand is 1, but it would still be interesting to see how our algorithm

compares to theirs on this class of graphs. The second, by Schneur [54], also works by gradually

rerouting flow. She has shown that her algorithm runs well on many problems. We would like

to compare the algorithms on the same machine and the same problems.

We conclude by mentioning a valuable lesson learned about accuracy. In the theoretical

results of Chapter 2, a good deal of technical effort was used to convert the results from a

model of computation in which infinite precision is used to a RAM model of computation. It is

tempting to view this work as being of purely theoretical interest. After all, modern computers

can perform arithmetic operations on real numbers almost as quickly as they can perform

arithmetic operations on integers. The single biggest difficulty in implementing this algorithm,

however, was dealing with the finite precision of the computer. The exponents of the length

functions that we wished to compute were typically too big for the computer. Many decisions



4.5. CONCLUSIONS AND OPEN PROBLEMS 117

had to be made about how to scale and round these numbers. In making these decisions the

theoretical work on adapting the algorithm for the RAM model of compttation was very useful.



118 CHAPTER 4. IMPLEMENTING MULTICOMMODITY FLOW ALGORITHMS

ng 0 <fx<= N<le,0<=y<O .08

z-axis is # of iterations.
Y-axis is (.
The top curve is 1/\v# of iterations.
The bottom curve is the minimum c achieved.

Figure 4.5: NETGEN graph with 50 nodes, 100 edges, and 20 commodities.



4.5. CONCLUSIONS AND OPEN PROBLEMS 119

ngkl0 150 <= x <= 350, 0 <= y <= 0.1

x-axis is # of iterations.
y-axis is C.
The top curve is I/Vl,#o0f iterations.
The bottom curve is the minimum c achieved.

Figure 4.6: NETGEN graph with 50 nodes, 100 edges, and 10 commodities.



120 CHAPTER 4. IMPLEMENTING MULTICOMMODITY FLOW ALGORITHMS

ngk10_3 100 =x<=O O<- - ' c =y <=-

z-axis is # of iterations.
y-axis is e.
The top curve is 1/ /# of iteriations.
The bottom curve is the minimum c achieved.

Figure 4.7: NETGEN graph with 50 nodes, 100 edges, and 10 commodities.



4.5. CONCLUSIONS AND OPEN PROBLEMS 121

ngk 1O_40 <= X <= 0 .<- y WO.1

z-axis is # of iterations.
y-axis is f.
The top curve is I/V/# of iterations.
The bottom curve is the minimum c achieved.

Figure 4.8: NETGEN graph with 50 nodes, 100 edges, and 10 commodities.



122 CHAPTER 4. IMPLEMENTING MULTICOMMODITY FLOW ALGORITHMS

I I I

rvnfklO 60 c= x <= 160, 0 <= y <= 0.15

z-axis is # of iterations.
y-axis is f.
The top curve is I/ '# of iterations.
The bottom curve is the minimum t achieved.

Figure 4.9: RMFGEN graph with 48 nodes, 140 edges, and 10 commodities.



4.5. CONCLUSIONS AND OPEN PROBLEMS 123

nnfk2O 150 <= x --300, 0<= Y<= 0.08

x-axis is # of iterations.
Y-axis is f.
The top curve is 1/ /# of iterations.
The bottom curve is the minimum c achieved.

Figure 4.10: RMFGEN graph with 48 nodes, 140 edges, and 20 commodities.



124 CHAPTER 4. IMPLEMENTING MULTICOMMODITY FLOW ALGORITHMS

rM60000 966dO<- x <-- 16000, 0<= y <=03%

z-axis is # of iterations.
y-axis is (.

The top curve is l/vif'ofiterations.
The bottom curve is the minimum ( achieved.

Figure 4.11: RMFGEN graph with 500 nodes, 2075 edges, and 700 commodities.



4.5. CONCLUSIONS AND OPEN PROBLEMS 125

I
0 <= x <= 40,0 <= y <= 2500

z-axis is # of commodity groups.
y-axis is # of iterations.
Each curve represents a set of runs on one of four different underlying graphs.

Figure 4.12: NETGEN graphs with 50 nodes, 100 edges, and from 10 through 70 commodities.



126 CHAPTER 4. IMPLEMENTING MULTICOMMODITY FLOW ALGORITHMS

I

0 <= x <= 40, 0 <= y <= 600

z-axis is # of commodity groups.
y-axis is # of iterations.
The curve represents a set of runs on one underlying graph.

Figure 4.13: RMFGEN graphs with 48 nodes, 140 edges, and from 10 through 70 commodities.



4.5. CONCLUSIONS AND OPEN PROBLEMS 127

I I
40 <= x <= 140,600 <= y <= 1600

z-axis is # of commodity groups.
y-axis is # of iterations.
The curve represents a set of runs on one underlying graph.

Figure 4.14: RMFGEN graphs with 192 nodes, 740 edges, and from 50 through 250 commodities.



Chapter 5

Approximation Algorithms for Shop

Scheduling'

5.1 Introduction

Shop scheduling refers to a large class of problems that typically arise in a shop, factory or

assembly line setting. The shop has m machines, and in the basic environment each machine

is different and performs a different function. Each job consists of a set of operations, each of

which must be processed on a particular machine; a job may have more than one operation

on a particular machine. We wish to produce a schedule that assigns a period of time to each

operation during which it is processed on the appropriate machine. The goal is to minimize

the completion time of the last operation to complete, while ensuring that no more than one

operation is assigned to a machine at any point in time and no two operations of the same job

are scheduled simultaneously.

A variety of constraints may be introduced on the order of execution of the operations of the

job, and different sorts of constraints yield different well-known versions of the problem. (We

focus only on order constraints between the operations of each job, and not between operations

of different jobs.) For example, if we impose a strict total order on the order of execution of

the operations of a job, the problem is a job shop scheduling problem. If the total order is the

'This chapter describes joint work with David Shmoys and Joel Wein [60].

129



130 CHAPTER 5. APPROXIMATION ALGORITHMS FOR SHOP SCHEDULING

same total order for every job, and each job has at most one operation on each machine, we

have a flow shop scheduling problem. If there is no order at all imposed on the execution of any

job's operations, we have an open shop problem. It is traditional in the scheduling literature

to focus, for the open shop problem, on the case when each job is processed on each machine

at most once (since operations on the same machine can be coalesced). We refer to the general

shop scheduling problem that does not fall into one of the three above categories as the dag

shop problem.

In this thesis we concentrate primarily on the job shop scheduling problem, for two reasons.

First of all, most of our results for other shop problems can be obtained as easy corollaries of

our results for the job shop problem. Second, the job shop problem is probably the most famous

and most difficult of all the versions of the problem. It is strongly ANP-hard, and moreover,

except for the cases when there are two jobs or when there are two machines and each job has

at most two operations, essentially all special cases of this problem are ./P-hard, and typically

strongly NVP-hard [19, 39]. For example, it is .NP-hard even if there are 3 machines, 3 jobs and

each operation is of unit length; in this case we can think of the input length as the maximum

number of operations in a job, /.

In addition to this theoretical evidence of the difficulty of the job shop problem, it is also

one of the most notoriously difficult ANP-hard optimization problems in terms of practical

computation, even with very small instances being difficult to solve exactly. A striking example

of this difficulty is that a single instance of the problem involving only 10 jobs, 10 machines

and 100 operations, which first appeared in a book by Muth and Thompson in 1963, remained

unsolved for 23 years despite repeated attempts to find an optimal solution [39]. Today, due

to better algorithms and faster machines, instances with 10 jobs and 10 machines seem to be

tractable. Applegate and Cook solved ten different 10 x 10 problems, including the notorious

instance mentioned above, in times ranging from 90 seconds to 42 minutes. (It is interesting to

note that the instance of Muth and Thompson was one of the easier instances to solve using

their technique). Slightly larger instances, however, are still currently intractable; they report

instances of size 10 x 15, 15 x 20, 15 x 15 and 10 x 20 that they were unable to solve [4].



5.1. INTRODUCTION 131

Formal Definition and Previous Results

We formally define the job shop problem as follows. We are given a set M = {m 1,m 2,...,am}

of machines, a set J = {J1,...,J.} of jobs, and a set O = fOij i = 1,...,p,,j = 1,...,n}

of operations, where ris indexes the machine on which operation Oj runs. Thus m is the

number of machines, n is the number of jobs, p, is the number of operations of job J, and

p = maxi pi. O0j is the ith operation of Jj; it requires processing time on a given machine

mk E M, where k = ni3 , for an uninterrupted period of a given length pi. (In other words, this

is a non-preemptive model. A model in which operations may be interruited and resumed at a

later time is called a preemptive model.) Each machine can process at most one operation at a

time, and each job may be processed by at most one machine at a time. If the completion time

of operation Oi, is denoted by Ci, then the objective is to produce a schedule that minimizes

the maximum-completion time, Cn, = max~j Cii; the optimal value is denoted by Cm.

It is possible to extend this model by associating with each job Jj a release date rj, on which

J4 becomes available for processing. A theorem of Shmoys, Wein and Williamson [61] shows

that the length of the optimal schedule is no more than twice the length of the optimal schedule

for the corresponding problem without release dates. All our results thus apply to this model,

with the corresponding bounds multiplied by 2.

The formal definition of the flow, open or dag shop problems are almost the same, except

for the following small differences:

"* flow shop: rq = rip, for all i,j,j', and ric 6 ri,j for all i,i',j.

"* open shop: The Oij can be processed in any order.

"* dag shop: For each job j we define a partial order on the Oj and require that they be

processed in any total order consistent with that partial order.

There are two fundamental lower bounds on the length of an optimum schedule. Since each

job must be processed, Cmu must be at least the maximum total length of any job, max.,, ',i pm,

which we shall call the maximum job length of the instance, Pm,.. Furthermore, each machine

must process all of its operations, and so C• must be at least max,, pi2,,tpq, which we

call the maximum machine load of the instance, Inm* These lower bounds apply regardless of



132 CHAPTER 5. APPROXIMATION ALGORITHMS FOR SHOP SCHEDULING

whether we have a job, flow, open or dag shop problem.

There has been a tremendous amount of literature on shop scheduling problems over the

last thirty years [39]. We mentioned earlier that all but the most restrictive versions of the job

shop problem are NP-hard, as are the other versions of the problem. When there are at least

3 machines both the open and flow shop problems are NP-hard [39]. When there are just two

machines both these problems are known to be in P [28, 24]. In contrast, the two-machine

job shop problem is only known to be polynomial-time solvable if each job has at most two

operations, or if each operation has unit size [39].

Despite all the attention, however, surprisingly little has been known about approxima-

tion algorithms for shop scheduling problems. In fact, all that was known was the following

observation by Gonzales and Sahni:

Theorem 5.1.1 [25] An algorithm A for the job shop problem that produces a schedule in which

at least one machine is running at any point in time is an m-approximation algorithm.

Proof: The length of the schedule produced by such an algorithm Cm,.(A) is bounded above

by Fij pdj, since some operation is always being executed. On the other hand, the average

machine load, •j p• /mi, is a lower bound on the maximum machine load, which is a lower

bound. The theorem follows directly. U

Little was also known in the way of negative results, results that indicate it is difficult

to approximate these problems. Recently, however, Williamson, Hall, Hoogeveen, Hurkens,

Lenstra, and Shmoys [70], extending work by Williamson [69], have shown that unless P = NfP,

none of these problems can be approximated arbitrarily closely.

Theorem 5.1.2 [701 Unless P = NP, there is no polynomial-time algorithm that approximates

any of the job shop, flow shop or open shop problems within a factor of less than 1. 0

Despite the lack of knowledge about approximation algorithms with good worst-case relative

error guarantees, there are two relevant results that are important to our work. The most

interesting approximation algorithms to date for job shop scheduling have appeared primarily

in the Soviet literature and are based on a beautiful connection to geometric arguments. This

approach was independently discovered by Belov and Stolin [7] and by Sevast'yanov [56] as well



5.1. INTRODUCTION 133

as by Fiala [15]. This approach typically produces schedules for which the length can be bounded

by IImax + q(m, p)pmax, where q(., .) is a polynomial, and p.. = maxq pj is the maximum

operation length. For the job shop problem, Sevast'yanov [57, 58] gave a polynomial-time

algorithm that delivers a schedule of length at most Hl.. + O(mps)pN... The bounds obtained

in this way do not give good worst-case relative error bounds. Even for the special case of the

flow shop problem, the best algorithms to date delivered solutions of length f0(mC_.).

Since these results are not well known in the West, yet are important tools for us, we provide

here a bit of information about the proof of the low shop result, which is simpler than the more

general job shop result. This simpler presentation of the proof is due to David Shmoys [62].

Theorem 6.1.3 There exists a polynomial time algorithm A for the flow shop problem that yields

a schedule of length bounded above by Cu + m(m - 1)Pmu.

Proof:

The proof relies heavily on the following lemma.

Lemma 5.1.4 Let {v 1 , v2 ,..., v,) be a set of d-dimensional vectors such -that " vj = 0.

There exists a polynomial-time algorithm that computes a permutation ir such that for any k -

1,...,n, II 1  v.(j)ll < dmaxi lIvIl, where we use Ilxll to denote the L1-norm of z.

Without loss of generality, we can assume that the load on each machine is equal to the

maximum machine load, namely 1 1 max. In this case the completion time of the schedule is

Ilmn. + I, where I is the amount of idle time on the last machine before it starts processing the

last operation of the last job to complete on it. If we choose a permutation 7 of the n jobs and

schedule their operations in that order on every machine, the condition '=1 (p.- 1 (l)-pI,,(,)) _

(m - 1)pmnx yields an upper bound of m(m - 1)Pm. on I.

Now if we construct a set of n m-dimensional vectors vj, where vj =(plj - Pft,P2f -

P3j, ... ,pm-i.J - Pmj), the algorithm mentioned in the previous lemma produces the necessary

permutation. U

Another important result on shop scheduling comes, somewhat surprisingly, from the litera-

ture on packet routing. Leighton, Maggs and Rao [41] have proposed the following model for the

routing of packets in a network: find paths for the packets, and then schedule the transmission



134 CHAPTER 5. APPROXIMATION ALGORITHMS FOR SHOP SCHEDULING

of the packets along these paths so that no two packets traverse the same edge simultaneously.

The primary objective is to minimize the time by which all packets have been delivered to their

destination.

The scheduling problem considered by Leighton, Maggs and Rao is simply the job shop

scheduling problem with each processing time pq = 1. They also added the restriction that

each path does not traverse any edge more than once, or in scheduling terminology, each job

has at most one operation on each machine. This restriction of the job shop problem remains

(strongly) ArP-hard [39]. The main result of Leighton, Maggs and Rao was to sho-. a.it for their

special case of the job shop problem, there always exists a schedule of length O(IUm. + Pm..).

Unfortunately, their result is not algorithmic, as it relies on a nonconstructive probabilistic

argument based on the Lovisz Local Lemma. They also obtained a randomized algorithm that

delivers a schedule of length O(I.m. .x .+ Pm, 1 log n), with high probability.

We can now state our main theorem.

Theorem 5.1.5 There exists a polynomial-time randomized algorithm for job shop scheduling,

that, with high probability, yields a schedule that is of length 0( '92(-)) C.o).v\log los(ra) mO /

Our techniques are useful not only for the job shop problem, but can easily be extended to

the general problem of dag shop scheduling. Another important generalization is the situation

where, rather than having m different machines, there are m' types of machines, and for each

type, there are a specified number of identical machines; each operation, rather than being

assigned to one machine, may be processed on any machine of the appropriate type. These

problems have significant practical importance, since in real-world shops, we expect that a

job need not follow a total order and that the shop has more than one copy of many of its

machines. We will give approximation algorithms with the same performance guarantees for

this generalization as well.

When m and p are constants, we can achieve much better approximation guarantees. Specif-

ically, we give a (2 + c)-approximation algorithm for this special case. Finally, we give parallel

approximation algorithms for all the scheduling models mentioned above and some improved

results for the open shop problem.

While all the algorithms that we give are polynomial-time, they are all also rather inefficient.



5.2. THE BASIC ALGORITHM 135

Most rely on the algorithms of Sevast'yanov, and for example, his algorithm for job shop

scheduling takes O((pmn)2 ) time. As a result, we do not refer explicitly to running times

throughout the remainder of this chapter. In Chapter 6, we will carefully consider the running

time for a deterministic version of the algorithm presented in this chapter.

The rest of this chapter is organized as follows. In Section 5.2 we extend the basic technique

of Leighton, Maggs and Rao to the general job shop problem. In Section 5.3 we show how to

scale and reduce the input data so that the techniques of Section 5.2 yield good performance

bounds. In Section 5.4 we show how our techniques apply to more general problems. We

conclude with a discussion of the open shop problem in Section 5.5 and some open problems in

Section 5.6.

5.2 The Basic Algorithm

In this section we extend the technique due to Leighton, Maggs and Rao [41] of assigning

random delays to jobs to the general case of non-preemptive job shop scheduling. A valid

schedule assigns at most one job to a particular machine at any time, and schedules each job on

at most one machine at any time. Their approach, for the special case of unit-size operations

and at most one operation of each job on each machine, was to first create a schedule that

obeyed only the second constraint, and then build frcm this a schedule that satisfies both

constraints and is not much longer. An outline of their strategy follows:

1. Define the oblivious schedule, where each job starts running at time 0 and runs continu-

ously until all of its operations have been completed. This schedule is of length Pm., but

there may be times when more than one job is assigned to a particular machine.

2. Perturb this schedule by delaying the start of the first operation of each job by a random

integral amount chosen uniformly in [0, Ilm.,x/ log n]. The resulting schedule, with high

probability, has no more than O(log n) operations assigned to any machine at any time.

3. Reschedule each unit of time t into O(log n) units of time during which each of the O(log n)

operations scheduled for time t is processed. The resulting (valid) schedule is of length

O(Pmax log n + ll..).



136 CHAPTER 5. APPROXIMATION ALGORITHMS FOR SHOP SCHEDULING

Our strategy builds upon this framework of Leighton, Maggs and Rao. Whereas Step 1 is

the same and Step 2 differs in only a few technical details, the essential difficulty in obtaining

the generalization is in Step 3.

2. Perturb this schedule by delaying the start of the first operation of each job by a ran-

dom integral amount chosen uniformly in [0, Ilm..]. The resulting schedule, with high

probability, has no more than 0( jsi" ) jobs assigned to any machine at any time.

3. "Spread" this schedule so that at each point in time all operations currently being pro-

cessed have the same size, and then "flatten" this into a schedule that has at most one

job per machine at any time.

For the analysis of Step 2, we assume that Pm,., is bounded above by a polynomial in n and

p. In the next section we will show how to remove this assumption. As is usually the case, we

assume that n > m; analogous bounds can be obtained when n < m.

Lemma 5.2.1 Given a job shop instance in which Pmn. is bounded above by a polynomial in n and

p, the strategy of delaying each job an initial integral amount chosen randomly and uniformly from

[0, ilmi] and then processing its operations in sequence yields an (invalid) schedule that has length

at most Imnx + Pm,. and, with high probability, has no more than 0( Ig( n) jobs scheduled onlog log(n p)

any machine during any unit of time.

Proof: Fix a time t and a machine in,; consider p = Prob[at least r units of processing are

scheduled on machine i at time t]. There are at most ('--) ways to choose r units of processing

from all those required on m,. If we focus on a particular one of these r units and a specific

time t, then the probability that it is scheduled at time t is at most 1/11mm, since we selected a

delay uniformly at random from among IInm, possibilities. If all r units are from different jobs,

then the probability that they are all scheduled at time t is at most since the delays

are chosen independently. Otherwise, the probability that all r are scheduled then is 0, since

it is impossible. Therefore,

11 •



5.2. THE BASIC ALGORITHM 137

6M e1 2 3 1 2 3 4 5 6
i J J3 1JS 

7

1 1 2 J4 J, J I• I 2 3• • J4 I-J,

M I m1 J3 J2 J4

""2 1 J6 IJ, IJ I7J 2

3 J9 , I4, I 5 ! 9 J7 I 8 = I

Figure 5.1: Flattening a schedule in the case with unit length operations.

If r = k Iog(" ,) then p < (np)-(-1). To bound the probability that any machine at any

time has more than k 'og(np) jobs using it, multiply p by Pmn. + 11.. for the number of time

units in the schedule, and by m for the number of machines. Since we have assumed that Pm..

is bounded by a polynomial in n and p, Pm.., + llmmx is as well; choosing k large enough yields

that, with high probability, no more than k Iog("') jobs are scheduled for any machine duringlog log( nu)

any unit of time. 0

In the special case of unit-length operations treated by Leighton, Maggs and Rao, a schedule

S of length L that has at most c jobs scheduled on any machine at any unit of time can trivially

be "flattened" into a valid schedule of length cL by replacing one unit of S's time with c units

of time in which we run each of the jobs that was scheduled for that time unit. (See Figure

5.1.)

For preemptive job shop scheduling, where the processing of an operation may be interrupted,

each unit of an operation can be treated as a unit-length operation and a schedule that has

multiple operations scheduled simultaneously on a machine can easily be flattened into a valid

schedule. This strategy is not possible for non-preemptive job shop scheduling, and in fact it

seems to be more difficult to flatten the schedule in this case. We give an algorithm that takes



138 CHAPTER 5. APPROXIMATION ALGORITHMS FOR SHOP SCHEDULING

a schedule of length L with at most c operations scheduled on one machine at any time and

produces a schedule of length O(cL log pw,,).

Lemma 5.2.2 Given a schedule So of length L that has at most c jobs scheduled on one machine

during any unit of time, there exists a polynomial-time algorithm that produces a valid schedule of

length O(cLlogp...).

Proof: To begin, we round each processing time pi, up to the next power of 2 and denote the

rounded times by A,; that is, A, = 2r1,*,pi. Let pm, = ma- pfij. From So, one can obtain

a schedule S that uses the modified p, and is at most twice as long as So. Furthermore, an

optimal schedule for the new problem is no more than twice as long as an optimal schedule for

the original problem.

A block is an interval of a schedule with the property that each operation that begins during

this interval has length no more than that of the entire interval. (Note that this does not mean

that the operation finishes within the interval.) We can divide 8 into [,!.. consecutive blocks

of size p'.. We will give a recursive algorithm that reschedules - "spreads" - each block of size

p (where p is a power of 2) into a sequence of schedule fragments of total length plogp. The

operations scheduled in a fragment of length T all have length T and start at the beginning

of the fragment. This algorithm takes advantage of the fact that if an operation of length p is

scheduled to begin in a block of size p, then that job is not scheduled on any other machine

until after this block. Therefore, that operation can be scheduled to start after all the smaller

operations in the block have finished.

To reschedule a block B of size p', we first construct the final fragment (which has

length p'max), and then we construct the preceding fragments by recursive calls of the algorithm.

For each operation of length p'. that begins in B, reschedule that operation to start at the

beginning of the final fragment, and delete it from B. Now each operation that still starts in

B has length at most p',.x/2, so B can be subdivided into two blocks, B, and B2, each of size

pý..x/2, and we can recurse on each. See Figure 5.2.

The recurrence equation that describes the total length of the fragments produced from a

block of size T is f(T) = 2f(1) + T;f(1) = 1. Thus f(T) = O(TlogT), and each block B in S

of size p' ,. is spread into a schedule of length pm. log p.m. By spreading the schedule 5, we



5.2. THE BASIC ALGORITHM 139

"1 J1 1 J21

(a) J2 14 is

I B I! C
cI- B 2.I . -1I. FC21

(') 2 J4 is

I-B I!C

I J3 I•2-I -C I---C---

( C) J J 2 J 4 i s

Figure 5.2: (a) The initial greedy schedule of length 8. p.. = 4. (b) The first level of
spreading. All jobs of length 4 have been put in the final fragments. We must now recurse on
B1 and B2 with p,,x = 2. (c) The final schedule of length 81og02 8 = 24.



140 CHAPTER 5. APPROXIMATION ALGORITHMS FOR SHOP SCHEDULING

produce a new schedule S' that satisfies the following conditions:

1. At any time in 8', all operations scheduled have the same length. Furthermore, any two

operations either start at the same time or do not overlap.

2. If S has at most c jobs scheduled on one machine at any time, then S' has at most c jobs

scheduled on one machine at any time as well.

3. S' schedules a job on at most one machine at any time.

4. S' does not schedule the ith operation of job Ji until the first i - 1 are completea.

Condition 1 is satisfied by each pair of operations on the same machine by the definition of

spreading and it is satisfied by each pair of operations on different machines because the division

of time into fragments is the same on all machines. To prove condition 2, note that operations

of length T that are scheduled at the same time on the same machine in the expanded schedule

started in the same block of size T on that machine. Since they all must have been scheduled

during the last unit of time of that block, there can be at most c of them.

To prove condition 3, note that if a job is scheduled by S' on two machines simultaneously,

then it must have been scheduled by S to start two operations of length T in the same block

of length T on two different machines. Consequently, it was scheduled by S on two machines

during the last unit of time of that block, which violates the properties of S.

Finally, we verify condition 4 by first noting that if two operations of a job are in different

blocks of size pn,• in 3, then they are certainly rescheduled in the correct order. Therefore

it suffices to focus on the schedule produced from one block. Within a block, if an operation

is rescheduled to the final fragment, then it is the last operation for that job in that block.

Therefore S' does not schedule the ith operation of job Jj until the first i - 1 are completed.

The schedule S' can easily be flattened to a schedule that obeys the constraint of one

job per machine at any time, since c operations of length T that start at the same time can

just be executed one after the other in total time cT. Since what we are doing is effectively

synchronizing the entire schedule block by block, it is important when flattening the schedule to

make each machine wait enough time for all machines to process all operations of that fragment

length, even if some machines have no operations of that length in that fragment.



5.3. REDUCING THE PROBLEM 141

The schedule S' has length L log p..; therefore the flattened schedule has length Lclogp .. "

We note in passing that the inclusion of release dates into the problem does not affect the

quality of our bounds at all. The release dates can either be directly included into probabilistic

analysis of lemma 5.2.1, or we can view each release date as one additional initial operation on

some (imaginary) machine.

5.3 Reducing the Problem

In the previous section we showed how to produce, with high probability, a schedule of length

0((lmax +P m..) log( lop) gPrnax
((I,, +.m.log log(nAt) og u) I

under the assumption that Pm.x was bounded above by a polynomial in n and p. Since

n..a + Pm.x = O(max Jflm., P..~))

this schedule is within a factor of O(osg(jn) logpm.,,) of optimal. In this section, we first

remove the assumption that Pmaz is bounded above by a polynomial in n and p by showing that

we can reduce the general problem to that special case while only sacrificing a constant factor

in the approximation, thereby yielding an 0( )-approximation algorithm. Then we how

how to sacrifice another constant factor to reduce to the special case that n is polynomially

bounded in m and p. Combining these two results, we conclude that we can reduce the general

job shop problem to the case where n and Pmax are polynomially bounded in m and p, while

changing the performance gu; -antee by only a constant.

5.3.1 Reducing pm,,,

First we show that we can reduce the problem to one where pax is bounded by a polynomial

in n and p. Let w = 1O0 be the total number of required operations. Note that W < np. Round

down each p,, to the nearest multiple of pm./W, denoted by p*,. Now there are at most w

distinct values of p', and they are all multiples of Pmj/W. Therefore we can treat the p!, as



142 CHAPTER 5. APPROXIMATION ALGORITHMS FOR SHOP SCHEDULING

integers in .0...,w}; a schedule for this problem can be trivially rescaled to a schedule S' for

the actual pq. (Note that assigning p, = 0 does not mean that this operation does not exist;

instead, it should viewed as an operation that takes an arbitrarily small amount of time.) Let

L denote the length of S'. We claim that S' for this reduced problem can be interpreted as a

schedule for the original operations that has length at most L + p... When we adjust the A,

up to the original pi,, we add an amount that is at most pm,,/w to each p,. Since the length of

a schedule is determined by a critical path through the operations and there are w operations,

we add a total amount of at most pi,, to the length of the schedule; thus, the new schedule

has length at most L + Pm.x ._ L + Cý.. Therefore we have rounded a general instance I of

the job shop problem to an instance I' that can be treated as having Pm.. = O(np); further, a

schedule for I' yields a schedule for I that is no more than Cm. longer. Thus, we have proved

the following lemma:

Lemma 5.3.1 There exists a polynomial-time algorithm that transforms any instance of the job

shop scheduling problem into one with Pm.,x = O(np) with the property that a schedule for the

modified instance of length kCý.x can be converted in polynomial time to a schedule for the original

instance of length (k + 1)Cýx.

5.3.2 Reducing the Number of Jobs

To reduce an arbitrary instance of job shop scheduling to one with a number of jobs polynomial

in m and p we divide the jobs into big and small jobs. We say that job Jj is big if it has an

operation of length more than llm.x/(2mp3 ); otherwise, we call the job small. For the instance

consisting of just the short jobs, let Hl'. and p' . denote the maximum machine load and

operation length, respectively. Using the algorithm of [58] described in the introduction, we

can, in time polynomial in the input size, produce a schedule of length I1'l, + 2m/1p-'m,. for

this instance. Since p',x is at most llma/(2mL3 ) and H' . I~man, we get a schedule that has

length no more than 2flnmx. Thus, an algorithm that produces a schedule for the long jobs that

is within a factor of k of optimal yields a (k + 2)-approximation algorithm. Note that there

can be at most 2m 2 pP long jobs, since otherwise there would be more than mIlm., units of

processing to be divided amongst m machines, which contradicts the definition of Ilmx. Thus

we have shown:



5.3. REDUCING THE PROBLEM 143

Lemma 5.3.2 There exists a polynomial-time algorithm that transforms any instance of the

job shop scheduling problem into one with O(m2p3 ) jobs with the property that a schedule for the

modified instance of length kCm.x can be converted in polynomial time to a schedule for the original

instance of length (k + 2)Cm..

From the results of the previous two sections we can conclude that:

Theorem 5.3.3 There exists a polynomial-tim- randomized algorithm for job shop scheduling,

that, with high probability, yields a schedule that is of length 0Off*(-"/)

Proof: In Section 2 we showed how to produce a schedule of length

0~ ~ (m""+ m. log(na) 19Pa
O((lmax +P ma) log log(ny)ligpm'x)

under the assumption that Pm.x was bounded above by a polynomial in n and p. From Lemmas

5.3.1 and 5.3.2 we know that we can reduce the problem to one where n and pmx. are poly-

nomial in m and p, while adding only a constant to the factor of approximation. Since now

logpm,. = O(log(mp)) and log n = O(log(mp)), our algorithm produces a schedule of length

log Iog(m-)

Note that when u is bounded by a polynomial in m, the bound only depends on m. In

particular, this implies the following corollary:

Corollary 5.3.4 There exists a polynomial-time randomized algorithm for flow shop scheduling,

that, with high probability, yields a schedule that is of length 0( 1'Cu.)" ,v log log m Va/

We now briefly address the issue of a parallel version of our shop scheduling algorithm.

AC is the class of problems that can be solved using a polynomial number of processors and

polylogarithmic time. RA/C is the class that, in addition, allows each processor to general a

log n bit random number at each step. Except for the use of Sevast'yanov's algorithm, all these

techniques can be carried out in RV'C We assign one processor to each operation. The rounding

in the proof of Lemma 5.2.2 can be done in AIC. We set the random delays and inform each

processor about the delay of its job. By summing the values of pi, for all of its job's operations,

each processor can calculate where its operation is scheduled with the delays and then where it



144 CHAPTER 5. APPROXIMATION ALGORITHMS FOR SHOP SCHEDULING

is scheduled in the recursively spread-out schedule. These sums can be calculated via parallel

prefix operations. With simple ArC techniques we can assign to each operation a rank among all

those operations that are scheduled to start at the same time on its machine, and thus flatten

the spread out schedule to a valid schedule.

Corollary 5.3.5 There exists a RY../C algorithm for job shop scheduling, that, with high proba-

bility, yields a schedule that is of length 0( Iog'(np)
•'log iog(nis) vm.x/

5.3.3 A Fixed Number of Machines

Sevast'yanov's algorithm for the job shop problem can be viewed as a (1 + Mp 3)-approximation

algorithm, which when m and p are constant, is an O(1)-approximation algorithm; that is,

it delivers a solution within a constant factor of the optimum. The technique of partitioning

the set of jobs by size can be applied to give a much better performance guarantee in this

case. Now, call a job J, big if there is an operation Oj with p,, > dflmn/(mp 3 ), where c is an

arbitrary positive constant. There are at most m 2p 3/( big jobs, and since m, p and E are fixed,

the number of jobs is constant.

Now use Sevast'yanov's algorithm to schedule all the small jobs. The resulting schedule is

of length at most (1 + c)Cý.x. There are only a constant (albeit a huge constant) number of

ways to schedule the big jobs. Therefore the best one can be selected in polynomial time and

executed after the schedule of the short jobs. The additional length of this part is no more than

Cax.

Thus we have shown:

Theorem 5.3.6 For the job shop scheduling problem where both m and A are fixed, there is a

polynomial-time algorithm that produces a schedule of length < (2 + c)C,.

5.4 Applications to More General Scheduling Problems

The fact that the quality of our approximations is based solely on the lower bounds m and

Pm.x makes it quite easy to extend our techniques to the more general problem of dag shop

scheduling. We define "max and Pm.x exactly the same way, and max { Plm, Pm..} remains a



5.4. APPLICATIONS TO MORE GENERAL SCHEDULING PROBLEMS 145

lower bound for the length of any schedule. We can convert this dag shop scheduling problem

to a job shop problem by selecting for each job an arbitrary total order that is consistent with

its partial order. 11 .m and Pma. have the same values for both problems. Therefore, a schedule

of length p. (I1ma, + Pma.) for this job shop instance is a schedule for the original dag shop

scheduling instance of length O(pCm•).

A further generalization to which our techniques apply is where, rather than m different

machines, we have m' types of machines, and for each type we have a specified number of

identical machines of that type. Instead of requiring an operation to run on a particular machine,

an operation now may run on any one of these identical copies. The value P&..- remains a lower

bound on the length of any schedule for this problem. The value Ima, which was a lower

bound for the job shop problem must be replaced, since we do not have a specific assignment

of operations to machines, and the sum of the processing times of all operations assigned to a

type is not a lower bound. Let Si, i = 1,... m', denote the sets of identical machines, and let

HI(S.) be the sum of the lengths of the operations that run on Si. Our strategy is to convert

this problem to a job shop problem by assigning operations to specific machines in such a way

that the maximum machine load is within a constant factor of the fundamental lower bounds

for this problem. To obtain a lower bound on the maximum machine load, the best we can do

is to distribute the operations evenly across machines in a set, and thus

H.9 -- max(S)S. ISIl

is certainly a lower bound on the maximum machine load. Furthermore, we can not split

operations, so pm.x is also a lower bound. We will now describe how to assign operations to

machines so that the maximum machine load of the resulting job shop scheduling problem is

at most 2 11.vg + Pmx. A schedule for the resulting job shop problem of length p. (Ilmax + Pma)

yields a solution for the more general problem of length O(p. (flavg + Pmax)). Sevast'yanov [58]

used a somewhat more complicated reduction to handle a slightly more general setting.

For each operation Oi, to be processed by a machine in Sk, if pij > Il(Sk)/ISkl, assign Oi, to

one machine in Sk. There are certainly enough machines in Sk to make this assignment and all

such operations contribute at most Pm,, to the maximum machine load. Those operations not



146 CHAPTER 5. APPROXIMATION ALGORITHMS FOR SHOP SCHEDULING

yet assigned each have length at most II(Sk)/IS&I and have total length < UI(Sk). Therefore,

these operations can be assigned easily to the remaining machines so that less than 2H(Sk)/Sk

processing units are assigned to each machine. Combining these two bounds, we get an upper

bound of 2Ilgs + Pma, on the maximum machine load which is within a constant factor of the

lower bound of max {f1,1g, Pm..}.

Theorem 5.4.1 There exists a polynomial-time randomized algorithm for dag shop scheduling

with identical copies of machines that, with high probability, yields a schedule th-" is of length at

most 0( log io(-,) Crnax).

Corollary 5.4.2 There exists an 7ZNC algorithm for dag shop scheduling with identical copies of

machines that, with high probability, yields a schedule that is of length at most 0(klxg(" ) Clog log~nu) "

5.5 The Open Shop Problem

Recall that in the open shop problem the operations of a job can be executed in any order.

Fiala [16] has shown that if Ilmax > (16mlogm + 21m)pmax, then Cm. is just lIm.x, and there

is a polynomial-time algorithm to find an optimal schedule, but in general this problem is

strongly N/P-Complete. We will show that, in contrast to the job and flow shop problems, a

simple greedy strategy yields a fairly good approximation to the optimal open shop schedule.

Consider the algorithm that, whenever a machine is idle, assigns to it any job that has not

yet been processed on that machine and is not currently being processed on another machine.

Anni Racsm~iny [6] has observed that this greedy algorithm delivers a schedule of length at

most Ilmax + (m - I)pmax. We can adapt her proof to show that, in fact, the greedy algorithm

delivers a schedule that is no longer than a factor of 2 times optimal. In fact Wein [681, has

shown that even with release dates the greedy algorithm is a 2-approximation algorithm. He

has also shown that this bound is fairly tight, since he can produce schedules of length (2- -)

times optimal. We include his proof here.

Theorem 5.5.1 The greedy algorithm for the open shop problem is a 2-approximation algorithm,

even when each job J, has an associated release date rj on which it becomes available for processing.



5.5. THE OPEN SHOP PROBLEM 147

Proof: Consider the machine mk that finishes last in the greedy schedule. This machine is

active sometimes, idle sometimes, and finishes by completing some job Ji. Since the schedule

is greedy, whenever mk is idle, J, is either being processed by some other machine or has not

yet been released. Therefore, the idle time is at most Xm,#mh Pij + rj < P. + r7 . Thus, machine

mj is processing for at most 11m., units of time and is idle for less than Pj + rj units of time.

This implies Cm.. < H.ma + Pj + rp. However, the value Pj + rj is a lower bound on the length

of the schedule, since no processing of job Jj could start until time rj. U

Using a slightly different (non-greedy) strategy, we can derive another algorithm that

achieves a schedule of length O(Cm. log n). This algorithm is also easily parallelizable, thus

putting the problem of finding an O(log n)-approximation to the open shop scheduling problem

in IVC.

We define the jobs graph, which is a bipartite graph that represents an instance of the open

shop problem. One side of the bipartition contains m nodes, one for each machine, whereas the

other side contains n nodes, one for each job. If job Jj has an operation on machine i then the

jobs graph contains an edge between the respective nodes.

First consider the case when all operations have the same size, L. Let A be the maximum

degree of any node in the remaining jobs graph. Then LA is a lower bound on the length of

the optimal schedule for this problem. However, since this graph is bipartite with maximum

degree A, it can be edge-colored using exactly A colors. So we edge-color the graph, and then

schedule the operations in each color class separately, thereby producing a schedule of length

IA, which is optimal. As long as there is at least one processor per operation, this coloring can

be done in NC using the edge-coloring algorithm of Lev, Pippinger, and Valiant [45].

We can extend this algorithm to one that solves the general open shop problem by first using

the techniques of Section 5.3.1 to reduce the problem to the case where all operations have sizes

polynomial in n, and then by rounding the operation sizes so they are all powers of 2. Now

there are only O(log n) different operation sizes. We schedule each one separately, using the

edge-coloring based strategy described in the previous paragraph. The schedule we get for any

particular t is optimal for that operations of that size, and hence each of the O(log n) schedules

we produce has length O(Cý..). Concatenating these schedules together, and observing that

the rounding can easily be done in NVC, we obtain the following theorem:



148 CHAPTER 5. APPROXIMATION ALGORITHMS FOR SHOP SCHEDULING

Theorem 5.5.2 An open shop schedule of length O(C, log n) can be found in NVC.

We can also use the results on open shop to get a simple bound for general dag shop

scheduling. For certain classes of problems this approach gives better bounds than those given

in 5.3.3. Consider the case when the constraints for each job form a dag. We will refer to each

job as a node of the dag. We define the depth of a node to be the distance of that node from

the root and the depth of a dag to be the length of the longest root-leaf path in the dag. If each

job j has an associated dag Di, let di be the depth of D1.

Theorem 5.5.3 Given a dag scheduling problem, let d = maxi d., the maximum depth of any

of the dags. Then there exists an algorithm that finds a schedule of length O(dCm.).

Proof: For each dag D,, let D• be the set - all operations at level i in the dag. Our algorithm

consists of d iterations. In iteration i, we consider the scheduling problem consisting of, for each

job j, all jobs in Di. The key observation is that in a dag, all jobs in any level are independent,

i.e., there are no precedence constraints among them. Hence the scheduling problem for each i

is an open shop problem. Further, since each of these problems is a subproblem of the original

dag scheduling problem, by Theorem 5.5.1, there certainly exists a schedule for the jobs at

level i of length 2Cm,, where Cmu is the length of the optimal schedule for the original dag

scheduling problem. Concatenating the d schedules yields a schedule satisfying the conditions

of the lemma. U

If d is constant, this approach yields constant factor approximation. Moreover, if each level

has about IId of the processing of each job and I/d of the processing of each machine, we also

get a constant factor approximation, regardless of how many levels we have.

5.6 Conclusions and Open Problems

We have given the first polynomial-time polylog-approximation algorithms for minimizing the

maximum completion time for the problems of job shop scheduling, flow shop scheduling, dag

shop scheduling and a generalization of dag shop scheduling in which there are groups of iden-

tical machines. The most basic question to be pursued is the development of approximation

algorithms with even better performance guarantees. It is our belief that the O(logpm..) factor



5.6. CONCLUSIONS AND OPEN PROBLEMS 149

that is introduced by the techniques of Section 5.2 can be improved upon, perhaps even by a

simple greedy method. Such methods have proved frustratingly difficult to analyze, however.

The other logarithmic factor in the performance bound seems much more difficult to improve

upon.

An interesting consequence of our results is the following observation about the structure

of shop scheduling problems. Assume we have a set of jobs that need to run on a set of

machines. We know that any schedule for the associated open shop problem must have length

fl(TIma + Pm.). Furthermore, we know that no matter what type of partial ordering we impose

on the operations of each job we can produce a schedule of length O((IImiz + Pmaz) --- ).

Hence for any instance of the open shop problem, we can impose an arbitrary partial order on

the operations of each job and increase the length of the optimal schedule by a factor of no

more than 0(102' ).Slog log rn)

An interesting combinatorial question is, "Can the imposition of a partial order really make

the optimal schedule that much longer than O(Ilm,. + Pm...)?" In other words, how good are

I.-ma and Pmaz as lower bounds? We have seen that in two interesting special cases-job shop

scheduling with unit-length operations and open shop scheduling, there is a schedule of length

O(IHm,. + Pm.). Does there always exist an O(Ilmr. + P...) schedule for the general job, flow

or dag shop scheduling problems?

Beyond this, there are several interesting questions raised by this work, including:

"* Do there exist parallel algorithms that achieve the approximations of our sequential al-

gorithms? For the general job shop problem achieving these approximations seems hard,

since we rely heavily on the algorithm of Sevast'yanov. For open shop scheduling, how-

ever, a simple sequential algorithm achieves a factor of 2, whereas the best A/T algorithm

that we have achieves only an O(log n)-approximation. As a consequence of the results

above, all one would need to do is to produce any greedy schedule.

"* Are there simple variants of the greedy algorithm for open shop scheduling that achieve

better performance guarantees? For instance, how good is the algorithm that always

selects the job with the maximum total (remaining) processing time?

"* Our algorithms, while polynomial-time algorithms, are inefficient. Are there significantly



150 CHAPTER 5. APPROXIMATION ALGORITHMS FOR SHOP SCHEDULING

more efficient algorithms that have the same performance guarantees?



Chapter 6

Derandomizing Shop Scheduling Via

Flow Techniques

In this chapter, we show how the shop scheduling algorithms of the previous chapter can be

made deterministic. One approach, which appears in [60], is to use a derandomized version of

the randomized rounding techniques of Raghavan and Thompson [52], which are alluded to in

Chapter 3. While this approach yields a polynomial-time algorithm, the polynomial is rather

large, since the bottleneck step is the solution of a large linear program. Recently, Plotkin,

Shmoys and Tardos [48] have generalized the multicommodity flow approximation algorithms

of Chapter 2 to show how to approximate a large class of packing linear programs. In this

chapter we shall use their results to obtain an algorithm that is much more efficient than the

randomized rounding approach. The key will be to phrase the problem of choosing initial delays

as the solution of a packing integer program. We then show how to find an integral solution

to the linear relaxation of this program that is close to the optimal solution. Besides yielding

a faster algorithm, this approach also yields a direct method for finding, in polynomial time,

an approximate solution to a certain integer program. Previously, such solutions could only

be found via the indirect method of randomized rounding. Our algorithm will imply the main

result of this chapter: a deterministic version of the shop scheduling algorithm with almost the

same performance guarantee as the randomized algorithm of Chapter 5.

151



152 CHAPTER 6. DERANDOMIZING SHOP SCHEDULING VIA FLOW TECHNIQUES

6.1 A Deterministic Approximation Algorithm

In this section, we "derandomize" the results of the Chapter 5 , i.e., we give a deterministic

polynomial-time algorithm that finds a schedule of length O(log 2(Min)Cm.). Of all the compo-

nents of the algorithm of Theorem 5.3.3, the only step that is not already deterministic is the

step that chooses a random initial delay for each job so that, with high probability, no machine

is assigned too many jobs at any one time. The reduction to the special case in which n and

pm. are bounded by a polynomial in m and ju is entirely deterministic, and ) we can focus

on that case alone. We give an algorithm that deterministically assigns delays to ea•.. job so

as to produce a schedule in which each machine has O(log(mp)) jobs running at any one time.

We then apply Lemma 5.2.2 to produce a schedule of length O(log2(mp)Cm.). The bound of

O(log(mp)) jobs per machine is not as good as the probabilistic bound of 0( ). We do" log iocem0) ;

not know how to achieve a bound of o( )) deterministically'. By a proof nearly identical

to that of Lemma 5.2.1, however, we can show that in order to achieve this weaker bound of

O(log(mp)) jobs per machine, we now only need to choose delays in the range [0, IIm./ log(mp)].

In fact, the reduced range of delays yields a schedule of length O(Pmaj log2(mp)+ +II.m log(mu))

which is within an O(log(mjs)) factor of optimal if Pm.,x = O(IImaz/log(mp)).

We now state the problem formally:

Problem 8.1.1 Deterministically assign a delay to each job in the range [0, m../log(mp)] so

as to produce a schedule with no more than O(log(mp)) jobs on any machine at any time.

The rest of this chapter focuses on solving Problem 6.1.1.

6.2 The Framework

In this section, we describe the framework of Plotkin, Shmoys and Tardos[48] for approximately

solving packing linear programs. We will be somewhat vague in our description, since it is only

meant to convey the main ideas of their work. In the next section, we will be more formal and

prove the results, citing from [48] as needed.

'A recent result by Srinivasan [65] describes how to achieve this bound using different techniques.



6.2. THE FRAMEWORK 153

Recall the concurrent flow problem that we solved in Chapter 2. We now state it as a linear

program:

minimize A

subject to

Af,(wv)- E f,(vw) = 0, for each node v V {s,,t,,
WtPEE UWEE

i = 11,.... n; (6.1)

Z f,(vw) = di,, for v = s,,i=1,...,n; (6.2)
vwEE

E f,(wv) = di,, for v = t,,i=1,...,n; (6.3)
wuvEE

k

-fi(vw) < A-. u(vw), Vvw E E; (6.4)
i=1

fi(vw) 2 0, Vvw E E,i= I,...n. (6.5)

Consider algorithm CONCURRENT. It initially find a flow that is a feasible solution to this

linear program, for some value of A. Each iteration finds a new flow (fi', the minimum-cost

flow), and then takes a convex combination of the new and old flow, thereby producing a flow

that is still a feasible solution, but for a smaller value of A. Informally, each iteration can be

thought of as tightening constraint (6.4).

Plotkin, Shmoys and Tardos [48] have shown that the techniques used for multicommodity

flow problem in Chapter 2 apply to a much wider class of problems. They have given approxi-

mation algorithms for a large class of packing linear programs. A packing linear program is one

that can be expressed in the following form:

minimize A

subject to

z E P; (6.6)

Ax < \b; (6.7)

z > 0; (6.8)



154 CHAPTER 6. DERANDOMIZING SHOP SCHEDULING VIA FLOW TECHNIQUES

where A is an p x q non-negative matrix, b is an p-dimensional non-negative vector, and P is a

convex set in R'. We use a, to denote the Pth row of A and use b, to denote the ith entry in b.

Such linear programs are called packing programs because constraints (6.7) define the problem

of packing a convex combination of vectors subject to "capacity" constraints b.

Let A• denote the minimum possible value of A. The main result of [48] is that if a packing

linear program satisfies certain technical conditions, then a solution with A < (1 + t)A" can be

found in polynomial time. Not all linear programs of the form above satisfy these technical

conditions, but several important applications, including minimum-cost multicommodity flow,

unrelated parallel machine scheduling and the Held-Karp lower bound for the traveling salesman

problem do satisfy these conditions.

We now show that the multicommodity flow problem can be expressed as a packing linear

program. Constraints (6.1) through (6.3) correspond to equation (6.6), where P is just the set

of convex combinations of all flows satisfying flow conservation. Constraint (6.7) corresponds

to inequality (6.4), the capacity constraints. The correspondence between equations (6.5) and

(6.8) is straightforward.

Our multicommodity flow algorithm requires a minimum-cost flow subroutine for each iter-

ation. The packing algorithm requires a subroutine OPT that

Given an m-dimensional vector y >_ 0, finds 1 E P such that ci = min(cz : x E P)

where c = yTA.

Again, if we let y be the edge lengths t in the multicommodity flow algorithm, the subroutine

OPT is just a minimum-cost flow algorithm.

We do not wish to spend much time on the general case. The reader is referred to [48]

for a host of algorithms and applications. To understand how the algorithm works, we state

the main routine, IMPROVE-PACKING which appears in Figure 6.1. Note the similarities with

DECONGEST. In particular, A, the maximum edge congestion is now max, aiz/b,, the maximum

amount by which the constraints (6.7) are violated. The constants a and a are chosen similarly

to the way they are in DECONGEST, but a depends on a new parameter p = maxi maxEp aiz/bi,

the width of P relative to Ax < b. The algorithm computes a cost y, for each constraint. It then

calls a routine that finds a minimum-cost point subject to these costs. Finally, the new solution



6.2. THE FRAMEWORK 155

IMPROVE-PACKING
0 \o- max, az/b,; a -- 4A0- 1c-1 ln(2mc•1 ); a 4--

while may, axz/b, > Ao/2 and z and y do not satisfy suitable relaxed optimality conditions
(1) For each i = 1,...,m: set y,- 4Le-sr/6-.

(2) Find a minimum-cost point i E P for costs c = yTA.

(3) Update x -- (1 - a)z + oi.
return z

Figure 6.1: Procedure IMPI.OVE-PACKING

is set equal to a convex combination of the old and minimum-cost solutions. Performing one

iteration of this algorithm leads to a significant decrease in a potential function 0 = yTb. Given

these similarities, one can see how much of the basic analysis follows along the same lines as

that of the multicommodity flow algorithm.

We also discuss two extensions to the framework described above that will be needed in the

next section. The first occurs when the polytope P can be expressed as a product of polytopes

of smaller dimension, i.e., P = P' x ... x Ph. A vector x is now partitioned, in some way, into a

series of vectors x 1,..., xk and x E P if and only if x' E P', i = 1.. .k. The set of inequalities

Ax < b can be written as

AY < b. (6.9)

The multicommodity flow problem can be formulated in this way. To give an concrete

example of this formulation, we explain the correspondence. With respect to the polytope

P, the multicommodity flow variables are f(vw), the total amount of flow on edge vw. We

can decompose P = p 1 x ... x pk with P representing the polytope of all feasible flows for

commodity i. As we have seen, each flow f(vw) can be decomposed into flows of the individual

commodities on each edge. Therefore, we have a series of vectors f,. .. , fk, where each vector

has m components, one for each edge, representing f i (vw). The constraints (6.1) through (6.3)

are already written individually for each commodity, and the capacity constraints, which sum

the total flow of all commodities on each edge are of the form given in equation (6.9). The

optimization routine is the same for each i, namely a minimum-cost flow routine for commodity

i.



156 CHAPTER 6. DERANDOMIZING SHOP SCHEDULING VIA FLOW TECHNIQUES

For the multicommodity flow problem, each component of the vector z E P, say z7, is

partitioned into k parts, z' through X, such that for each xZ' E Pi and for each e, x, = x1 Z.

This particular partition of z is not unique. Assume that x has r. a components. It is possible

to partition z into r length-s vectors such that xi = (z'4,...z,) = (zx.(,-.)+1,...,z,..). We use

the latter partitioning on the job scheduling problem.

Other definitions for the product of polytope representation follow. In particular, we use

a,ý to denote the jth row of A'. Let p' denote the width of Pi relative to AYz < b, i = 1,... k.

Observe that p = E" p4. Instead of a subroutine OPT, we have a series of k subroutines. The
ith subroutine minimizes cz' subject to z' E P' for costs c =- ytA.

In [48], the main motivation for introducing this formulation is to allow the use of random-

ness. Where algorithm CONCURRENT randomly chooses a commodity i to reroute, Plotkin,

Shmoys and Tardos randomly choose a polytope P over which to optimize. For the purposes

of shop scheduling, we are concerned only with a deterministic algorithm, and so the main

reason for introducing this formulation is to simplify our algorithm. By separating out the

different polytopes, an iteration of IMPROVE-PACKING can be applied to one job at a time.

The other extension we need to make deals with integral solutions. In Problem 6.1.1, we need

to choose integral delays for each job. The procedure IMPROVE-PACKING makes no attempt

to maintain an integral solution. However, IMPROVE-PACKING can be modified to obtain an

integral solution. We proceed to outline this modification, which is similar to the one used in

Section 3.2.

First, we need to maintain that the point i returned by the optimization routine is integral.

We make use of the fact that the optimization routines of interest have the property that there

always exists an optimal integral solution. Hence, without loss of generality, we can restrict the

search to integral solutions. For multicommodity flow, the optimization routine has integral

solutions, since it is well-known that a minimum-cost flow problem with integral data always

has an optimal integral solution. As we shall see, for shop scheduling, it is also true that

the optimization routine always has an optimal integral solution. Second, we have to ensure

that (1 - a)z + a! is integral, which is accomplished by maintaining that all components z,

are integral multiples of the current value of a. The modifications needed in the analysis are

similar to those needed in Section 3.2. In particular, it is still possible to show that even with



6.3. THE SOLUTION 157

the restriction to integral solutions, a potential function - pTjb decreases in each iteration,

and the running time remains that same as that of the non-integral version, up to constant

factors. In addition, by analysis similar to that used in Theorem 3.2.1, we can obtain the

following theorem:

Theorem 6.2.1 (Plotkin, Shmoys, Tardos[48]) Let 71 = max, p', and let = max{A*, (;5/d) log M},

where M is the number of packing constraints and d is a parameter such that each compo-

nent of each zi is comprised of integral multiples of d. There exists an integral solution to

EiAY < Ab with x' E P for i = 1,...,k and A < A* + O( A(-A/d)log(Mkd)). Repeated

calls to the deterministic integral version of IMPROVE-PACKING find such a solution (Y, A) using

O(dp/lp + plog(M)/A .4- klog(dp/p)) calls to each of the k subroutines. Further, throughout the

execution, c = 1?(\/ilg(Mkd)/(d,)).

For the remainder of this chapter, we focus specifically on the application to shop scheduling

and quote results from [48] as needed.

6.3 The Solution

We now turn to the solution of Problem 6.1.1. Since we introduce initial delays in the range

[0, 11.x/ log(mp)l, the resulting schedule has length I = Pm.+flm./log(mji). We can represent

the processing of a job J1 with a particular initial delay d by an (I. m)-length {0, 1}-vector

where each positfon corresponds to a machine at a particular time. The position corresponding

to machine mi and time f is 1 if mi is processing job J, at time f, and 0 otherwise. For each

job Ji and each possible delay d, there is a vector Vid that corresponds to assigning delay d to

Jii.

Let irj be the set of vectors {V,,,..., Vjd.,}, where dm.., = nlm.j/log(mp), and let VIK(i) be

the i"' component of Vjk. Given the set A = {fr,,. .. , 7r,} of sets of vectors, Problem 6.1.1 can

be stated as the problem of choosing one vector from each 7ri (denoted V7*), such that

"V = O(log(mp)).
00



158 CHAPTER 6. DERANDOMIZING SHOP SCHEDULING VIA FLOW TECHNIQUES

In words, we wish to ensure that at any time on any machine, the number of jobs using that

machine is O(log(mp)).

We can reformulate this problem as a {0, 1}-integer program. Let za• be the indicator

variable used to indicate wheth-r V'd is selected from iri. The vector z has length n " dm.,, where

the ith entry is denoted z,[ d...1* Thus the problem of assigning delays to the jobs so

as to minimize congestion can be phrased as the following integer program (ICONJ):

minimize A

subject to
dm~

Xd = 1, j ,...,n; (6.10)
d=1

n dmýs

EEVdiXd< A lo9(Mil), t= a,..,i,; (6.11)
j=i d=1

x E { 0 , 1 }nxdd_. (6.12)

Note that we put log(mp) on the righthand side because we know, by Lemma 5.2.1 that

there exists a solution where the maximum number of jobs oa any machine is O(log(mp)).

Thus \* = O(1). However, A' can be as small as 1/log(mp). While our algorithm may find

such a solution, the best that we can show that it always finds a solution with A = O(1).

The linear programming relaxation of ICONJ is just equations (6.10), (6.11) and the con-

straints that x > 0. Note that the constraints x < 1 would be redundant, given (6.10). In order

to show that the linear programming relaxation of ICONJ is a packing linear program we will

show how to express it in the form given in the definition of a packing linear program.

Constraint (6.11) is clearly in the form Ax < Ab where b is a vector in which each component

is equal to log(mp) and each column of A correspond to one vector Vi. Next we consider the

constraints (6.10). First, we see that these can be decomposed into n different constraints,

one for each job Jp. Thus the polytope P, defining all constraints (6.10) can be decomposed

into n polytopes P = P 1 x ... x Pr, where polytope Pi corresponds to job J,. Now we focus

on a particular polytope P1'. The constraint -,d, ' _1 just says that for all vectors xf,

xj' E Pj' must lie in the dmx-dimensional unit simplex. Each vertex of simplex Pi' corresponds

to choosing a particular delay for job j'.



6.3. THE SOLUTION 159

With the problem phrased in these terms, we can now use Theorem 6.2.1 to bound the

number of iterations of an integral version of IMPROVE-PACKING needs to find a solution to

ICONJ with A = O(1). We will deal with the implementation of an iteration later. Note

that this is a typical use of the framework of Plotkin, Shmoys and Tardos; one bounds the

number of iterations in a fairly standard manner but then must implement one iteration in a

problem-specific fashion.

Lemma 6.3.1 An integral solution to ICONJ can be found such that , = O(1), using O(nlog(mp))

iterations of a deterministic integral version of IMPROVE-PACKING. Further throughout the execu-

tion, c = Q(1).

Proof: We must compute the particular values of the various parameters in Theorem 6.2.1.

The width

- = maxp' = maxmaxmax(azx/bj).
.1 j t i

From constraints (6.10), apr? < 1 for all i,j and bi = log(rmp) for all i,j, and therefore

5= 1/log(mp). The polytope P is the crossproduct of n identical polytopes, and hence

p = ni. The number polytopes k = n and d = 1, since all variables are integral. Next, we

bound the number of constraints. There is one constraint for every possible time unit for every

possible job. There are m jobs and Pm, + Hmax/log(mp) possible time units. Hence

M = m(Pm. + /log(mp)). (6.13)

From Lemma 5.3.1 we know that the maximum operation size Pm.x = 0(np) and from Lemma

5.3.2, the number of jobs n = O(m 2p3). The maximum machine load, fIn.,a, is maximized if

all operations are of lengt~i Pmax and fall on one particular machine, thus 1 mx< n•pmax =-

0(n 2p2 ). The maximum job length, Pmax, is at most PPmax, so Pmax = O(n,12 ). Putting these

bounds together, we obtain

M = m(Pmax + Im.x/log(m/')) = 0 (m (nP2 + log(mp)))

= 0 (M (m2ps + MW O(m5 pg).
log( mp)/.



160 CHAPTER 6. DERANDOMIZING SHOP SCHEDULING VIA FLOW TECHNIQUES

We will use below that log M = O(log(mr)). Now we turn to the quality of the solution.

A' = max(A-,(-/d)logM) = max(O(1), logM 0().
log(mp)

In addition, since we know by Lemma 5.2.1 that there exists a solution with A = O(1),

A" = O(1). Thus

A < A'+O(A'('p/d)log(Mkd))

S0() + 0 (1) ( - p) Iog(n2p2m2,p3)

0 0(1).

For the running time we need

0(dpl/- + p log(M)/A + k log(dp/-i))
n log M

= O(n+ logr + nlogn)
log(mp)

= 0(nlogn)

= 0(nlog(my))

calls.

Finally, the error c = Q(V-)1 log(Mkd)/dA") = 1(l). E

We now turn to the time needed to implement one iteration. We will show that an iteration

can be implemented efficiently in the RAM model of computation. While it appears that the

algorithms in [48] can be implemented in the RAM model using techniques similar to those used

in Section 2.4.2 of this thesis, the computation is not explicitly done in [481. Here we perform the

necessary computations for the case of program ICONJ. The first step of IMPROVE-PACKING

computes the costs y/ = As before, the difficulty here is that we have to compute

exponential functions. In order to have an efficient algorithm, we must bound the precision

needed in our computation.

We now show that we need only 0(log(mp)) bits of precision for each component of y. We

use the following theorem of [48], which is similar to Lemma 2.4.24.



6.3. THE SOLUTION 161

Theorem 6.3.2 [48] Let C,(y) be the value returned by OPT, the minimization subroutine. If

we replace OPT by an algorithm that finds a point i such that

Y T I )C(y) "++ 'AYTb (6.14)

for any y > 0, then all the bounds on the running time of the algorithm still hold. In particular, a

potential function 4o = yTb still decreases by the same amount, up to constant factors.

While this theorem stipulates that an approximate i is sufficient, it does not explain how

to find one efficiently. We now show that such an i can be found. The idea is to compute an

approximate set of dual variables g, such that exact optimization with respect to i produces

an 1 satisfying inequality (6.14).

The approximate dual variables g are integral and consist of O(log(mp)) bits per edge. We

introduce two parameters -f, an amount by which each approximate dual variable is scaled, and

C, the number of bits of accuracy in each approximate dual variable. We set Y = c'eaA/(nppm.),

and will compute approximate dual variables g so that -yg - y and each component of j can be

represented in C bits. It will take O(log(mp)) time to compute one component of g.

For each component yi, first we compute eQ(*,r/b'-) approximately so that it has at most

c= E/(4/•pma) additive error, then we multiply the result by C', take the integer part, and set

, to be this value. Using the Taylor series, we can compute one bit of e- in O(1) time. Since

ea(4ez/b.-) is at most 1 on each edge, it is sufficient to compute 0(log(1/()) bits to achieve

the desired approximation. Therefore each , can be computed in 0(log(1/()) = O(log(mU/c))

time. From Theorem 6.2.1, we know that e - i(), hence 0(log(mp/c)) is just O(log(mpi)).

Because of the approximation and the integer rounding, the vector i, which is of minimum

cost with respect to 9, is not necessarily minimum-cost with respect to y. However, we now

show that an 1 that is minimum-cost with respect to g satisfies conditions (6.14).

Lemma 6.3.3 Let g be a set of dual variables computed as above. Then a point i E Pi

minimizing /TAji satisfies inequality (6.14), where Cp(y) is computed with respect to exact dual

variables y. Further, each g, can be represented in 0(log(mp)) bits.

Proof: The idea is to show that if we minimize with respect to the approximate dual variables



162 CHAPTER 6. DERANDOMIZING SHOP SCHEDULING VIA FLOW TECHNIQUES

j, the resulting solution, i, is "close" to the true minimum solution X. We will first bound the

maximum possible difference between any component of y and the corresponding component of

j. We will then translate this into a bound on the difference between 0 = jrAj and cj = yTAj.

Finally, we will show that the both x and i have a very special structure: they have exactly

one component equal to 1 and the rest equal to 0. This will allow us to bound the difference

between yTAi and C(i(y) and hence prove the lemma.

We now proceed with the details. Recall that -/ = e*"C/log(mp) and C = e/( 4 pp..j). We

bound the difference between y and -yj, the approximate dual variables scaled to have the same

units as y. In computing -ye, we introduce errors in several places. When computing eo(4.9/6--A)

to a precision of C, we introduce an error of at most C. This error is multiplied by by (-' and

may be increased by 1 when we round ý down to an integer. Finally, when we scale j to have

the same units as y, the entire error gets scaled by -. Thus,

y, - , _gi : t(C ((-') +1)

= 2-1. (6.15)

Now consider 9 = 'TAJ. Each column of Aj corresponds to a vector Vj for some d and

hence is a vector of length I • m that has at most pUpm,, ones. Thus each entry of cj is the

sum of at most Ppmax entries of 3. By inequality (6.15), we know that -tg, differs from y, by at

most 2 -. Hence the difference between an entry of -te, say -f&, and the corresponding entry of

cj = yTAj is at most 2/j•prnaX. Consider the problem of finding an f E Pi that minimizes 6i.

(The case for ciz is identical.) The vector 6i is non-negative. Let & be the component of 0

with minimum value. Recall that constraints (6.10) require that T ' = 1. Then it is easy

to see that the V E pF that minimizes 6 ji has zj = 1 and all other components of z' equal to

0. This setting is the vector i. Thus for the i that minimizes Z'x', we have that

• - (1
<_2,ppm,,x, (6.16)



6.3. THE SOLUTION 163

where the last inequality follows from the discussion above. But

2-p.X 2e*A• CIppmS t eA (6172'pm =4pp log(p) = -2log(mp)" (6.17)

We know that e*a < yTb, since at least one component of y is equal to all components

are non-negative and bi = log(mp) Vi. Also, since some job must execute on some machine,

A > 1 Combining inequalities (6.16) and (6.17) with these two bounds we get that

Cii- 7•i <_ 2Aytb. (6.18)

But -12ý1 just selects the minimum element of V'. Since componentwise, 'y• < ci, we know that

-yV'i < Cp(y), which together with inequality (6.18) implies inequality (6.14). E

So, without affecting the performance of our algorithm, we can use approximate costs. Note

that we have also shown that the subroutine OPT applied to this problem always has an optimal

solution that is integral. Further, we have a nice combinatorial characterization of this routine,

since it reduces to finding the minimum of a set of numbers. Yet, in order to have an efficient

algorithm, more work needs to be done. Since the number of entries in the matrix A and

the vectors y and b are extremely large polynomials in m and ju, we would like to avoid using

straightforward matrix-vector and vector-vector multiplications, since they take too much time.

We can obtain a more efficient algorithm by taking advantage of the structure of the problem

and noticing that between two iterations, not too many variables change.

In the remainder of this chapter, we will first show that in each iteration of IMPROVE-

PACKING, a small number of the components of y change. We will then show that if a small

number of the components of y change then a small number of the components of c change.

Further, we will show how to compute an entry of c in less time than the naive method of

multiplying yT by a column in A. We will then show, that by using a heap data structure, we

can efficiently compute min(yTAizi :xi E Pi) and thus be able to conclude that an iteration

Uf IMPROVE-PACKING can be implemented efficiently.

Lemma 6.3.4 In each iteration of IMPROVE-PACKING, O(np) components of y change. Further,

these changes can be computed in O(np log(mp)) time.



164 CHAPTER 6. DERANDOMIZING SHOP SCHEDULING VIA FLOW TECHNIQUES

Proof: Consider the evaluation of the statement z' -- (1 - o)zj + V9. Since we maintain

that a = 1 throughout, this reduces to zi .- i'. In other words, we take job Jj and change

its assignment delay from some value d' to some other value d', set 4, = 0 and ,, = 1. By

changing the value of one variable Zi, we affect the value of at most P.. dual variables, because

setting 4 = 1 implies that job j runs for at most Po., time units starting at time d. Since

each y, corresponds to a particular machine at a particular time, only the P.. components of

y that correspond to machine-time pairs in the schedule implied by 4 are affected. Thus we

must recompute at most 2 Prm,, components of y.

Once we know which elements to compute, Lemma 6.3.3 tells us that each one can be

computed in O(log(mp)) time. To identify the components of y to recompute, we simulate

the execution of job Jj with delay d. We simply walk through the corresponding schedule for

that job and for each machine-time pair that the job uses, and update the corresponding dual

variable.

We now turn to the second and third steps of IMPROVE-PACKING. Step 2 involves finding

a minimum-cost point zi E Pi for costs ci = yTAJ Vj ---. ,.,.n and step 3 involves updating

the solution.

We first show that in an iteration, not too many of the components of c change. As we

saw in Lemma 6.3.4, the only components of y that change are those associated with machines

running in the time intervals (d',d' + Pm.x - 1) and (d",d" + Pm.. - 1). Each component of c,

d, is associated with starting job J, at time d then running for up to P,,X units. In fact, CY is

equal to the sum of the components of y associated with the machine-time pairs on which job J1

is active. Since all the components of y that changed are in the two intervals (d', d' + Pm' - 1)

and (d", d"+ Pn., - 1), the only components of c that can change must be associated with jobs

running in those intervals. But the only jobs can be running in those intervals are those that

receive initial delays in the range (d' - Pm.x, d' + Pm. - 1) or the range (d" - Pint.,, d" + Pmn. - 1).

There is one component of ci associated with each possible delay, and hence for a particular

job Jp, there are a total of at most 4 Pmt.. changes overall. Summing over all the jobs, we get a

total of 4nPm.,, possible changes.

We could recompute these 4nPmt., components of c by taking the dot product of two length



6.3. THE SOLUTION 165

dm., vectors. However, we can perform this computation more efficiently.

Lemma 6.3.5 Assume that we have computed the new values of the components of y as in

Lemma 6.3.4. Then the correct values of c = c,..., Cn can be computed in O(n 2 p3 ) time.

Proof: Assume that we have already computed e and we wish to compute cf+. Recall the

definition of Vj¼. It has a component for every time on every machine and is one when the

component associated with a particular machine-time pair is busy. We can express

d YTA Idy

and

=YT A' = YT

Additionally Vj(d+l) corresponds to running the operations of job Jj on the same sequence of

machines as Vd, only one time unit later. Therefore, the two vectors Vjd and Vj(d+1) differ in

at most 2p positions. Hence, C•+ can be computed from c• using O(p) additions, assuming

we know in which components C and C+ 1 differ. Since the matrix A is fixed throughout the

algorithm, we can use a preprocessing phase to construct a series of lists XJ, one for each

c'd, j = 1,.. ., n, d = 2,.. .,dmax. Each Xj contains a list of the up to 2p positions in which

Vid differs from Vj(d-1), along with an indication of whether the difference is that Vj4 = 1 and

Vj(d-1) = 0 or vice versa. There is no predecessor of ci, but we can precompute Xj j 1 .n,

the list of positions in which ViI = 1, to speed up the computation of Ci.

Thus for each j, we may have to compute cj, which takes O(QAprn) time, and then 4 Pm.,

more values, each of which take O(p) time. Summing over all jobs, we get a total time of

O(n(jupm.. + pPm..)) = 0(nflpPm.) = O(n'p 3). E

As mentioned before, given a vector c, the problem of finding an i that minimizes cdi for a

job Jj consists of choosing the minimum component of d'. Thus, for each job Jj, we maintain a

heap Hi consisting of the dm.x values of cd, d = 1,..., n. We also maintain a list £V, where the

&th component of £V, £C, contains a pointer to the position that Ci occupies in heap H/. This

data structure allows us to insert an element, delete an arbitrary element and find the minimum

value, all in O(logd,,,.) = 0(log(mp)) time. Thus we can minimize e'i in 0(log(mp)) time by



166 CHAPTER 6. DERANDOMIZING SHOP SCHEDULING VIA FLOW TECHNIQUES

1. Let , and ,, be the variables changed in the previous iteration.

2. Compute yp as described in Lemma 6.3.4.

3. Let D = (d' - Pmx,d' + PF,, - 1) u (d" - Pmg,d" + Pmax - 1) the set of possible initial
delays affected.

4. Recompute C" j = 1, ... ,n; Vd E D, making the appropriate heap changes.

5. Compute the minimum value in each heap. Let the minimum value in Hj be c, j =
1,..

6. Compute the decrease in 0 = yTb associated with replacing the current assignment for
job J, with a minimum-cost assignment, j 1, ... ,n.

7. Let j' be the job that maximizes the decrease in 4t. Let i be the vector with a 1 in
position i., and 0 elsewhere. Let xi' *-- i.

Figure 6.2: One iteration of the algorithm

choosing the minimum element out of the heap.

Of course, we must update the heap when costs change. Each change can be implemented as

a delete followed by an insert. However, as we saw in Lemma 6.3.5, there are O(Pmu.) changes

in the costs for each job for a total of O(nPm,j) heap operations.

We can now restate the algorithm for one iteration of IMPROVE-PACKING, specialized to

Problem 6.1.1. This algorithm appears in Figure 6.2 and is a summary and formalization of ýhe

ideas presented in this section. Note that, in spite of the phrasing of the problem as a linear

program, at no point do we have to perform any matrix operations.

Lemma 6.3.6 The algorithm in Figure 6.2 executes an iteration of IMPROVE-PACKING in

O(n2 •p(p + log(mp))) time.

Proof: The correctness follows from Lemma 6.3.3 and the discussion of this section. We pro-

ceed to bound the running time. By Lemma 6.3.4, Step 2 takes O(nplog(mp)) time. By

Lemma 6.3.5, updating c takes O(n 2 P3 ) time and requires O(n.Pm .) heap operations that

take O(n 2 jA2 log(mp)) time. Step 5 requires one operation in each of n heaps, for a total of

O(n log(mp)) time. For Step 6, we need, for each job, to compute the new t that would occur

after reassigning that job. Since t = yTb = (y'T1)log(mp), t can be computed by summing

all the components of y. To compute the change associated with one job , we simulate Steps

____ ____ ___ ____ ____ ___ ____ ____ ___



6.3. THE SOLUTION 167

1 and 2 of the algorithm and then compare the sum of the values of the O(P...) components

of y that have changed. We can perform this computation in 0(nuslog(mrp)) time per job

and 0(n 2,plog(rnp)) time overall. Step 7 can be performed in O(n) time. Putting these steps

together yields the bound of the lemma. M

Combining this lemma with Lemma 6.3.1 yields the following theorem:

Theorem 6.3.7 Problem 6.1.1 can be solved deterministically in O(n 3 js 2 log(mp)(As+log(Mp)))

time.

Finally, combining this theorem with the results of Chapter 5 we get the following theorem.

The other bottleneck in the shop scheduling algorithm is the algorithm of Sevast'yanov [56]

that takes 0((jimn)2 ) time.

Theorem 6.3.8 There exists a deterministic algorithm for job shop scheduling that finds a sched-

ule of length O(log 2(mMI)Cm.x) in 0(n 2m 2p2 + n 3/I2 log(mp)(p + log(mp1))) time.

The running time in Theorem 6.3.8 compares quite favorably with the previous best bound

for this problem. The previous bounds involved using the linear programming algorithm of

Vaidya [67], which takes 0(n1 0 _5 y log(mp)) for this problem, combined with a deterministic

version of the randomized rounding of Raghavan and Thompson [52] and Raghavan [50].



Glossary of Notation

A glossary of nation, containing symbols that are used frequently, follows. It is divided into three

sections. The first contains notation used in Chapters 2, 3 and 4 to describe multicommodity

flows. The second contains notation used in Chapters 5 and 6 to describe shop scheduling. The

third contains notation used only in Chapter 6. Each section is alphabetized, with all Roman

letters preceding all Greek letters.

Chapters 2, 3 and 4

Symbol Meaning

C, the cost of the flow for commodity i

CI, C,(A) the cost of the minimum-cost flow for commodity i

c(vw) the cost of edge vw

D the sum of demands

Di max, {id(v)I}

di the demand for commodity i

d,(v,) the demand for commodity i at node vj

d(A, A) the demand for commodities with one endpoint in A and the other in A

disti(v, w) the length of the shortest path from v to w with respect to I

dmax the maximum demand

Y an instance of a feasible flow problem

A* an approximately minimum-cost flow for commodity i

40 an approximately minimum-cost flow for commodity i that can be

represented in O(log(nU)) bits

169



170 CHAPTER 6. DERANDOMIZING SHOP SCHEDULING VIA FLOW TECHNIQUES

f(vw) the flow on edge vw

f,(P) the flow of commodity i on path P

fA(vw) the flow of commodity i on edge vw

G = (V, E) a graph with vertex set V and edge set E

G= = (V, Ej) the residual graph with vertex set V and edge set EL

I an instance of a multicommodity flow problem

Ip the number of productive iterations during a call to DECONGEST

IU the number of unproductive iterations during a call to DEco/NGEST

KC a specification of k commodities

k number of commodities

V" the number of distinct sources

t(vw) the length of edge vw

M an instance of a minimum-cost flow probri.m

m number of edges in the network

A" an instance of a maximum flow problem

n number of nodes in the network

P a path

A• a collection of paths from si to t,

p(v) the price of node v

3, the source of commodity i

TMCF the time to find a minimum-cost flow

TP the time taken by one productive iteration during a call to DECONGEST

TU the time taken by one unproductive iteration during a call to DECONGEST

ti the sink of commodity i

U maximum capacity

u(vw) the capacity of edge vw

z a percentage to scale demands by

a a parameter in the exponent of the value of I

F(A) the set of edges with exactly one endpoint in node set A, the cut associated with A.

-y an amount by which each approximate length is scaled

_______________________________________________



6.3. THE SOLUTION 171

San error param eter; a m easure of solution accuracy

A the maximum edge congestion; congestion

A* the minimum possible value of A

A0  the congestion at the start of procedure DECONGEST

* the potential function

the value of the potential function at the beginning of iteration i of DECONGEST

a the fraction of flow to reroute

Vi the fraction of flow of commodity i to reroute

T a target value of A

C the number of bits of accuracy in each approximate length

Chapters 5 and 6

Symbol Meaning

cij the completion time of operation Oij

C.. maxij Cj

Cý. the minimum possible completion time

J = J..) the set of jobs

Ml = {mlm 2 ,.. ., m,} the set of machines

m the number of machines

n the number of jobs

0 = Ooli = 1,....., j,j =1,...,n) the set of operations

Pmax the maximum job length

pAi the processing time of the ith operation of job J1

P~j p', rounded up to the next power of 2

ri the release date of job Jj

Si a set of identical machines

f an error parameter

Kij the machine on which operation O0j runs



"72 CHAPTER 6. DERANDOMIZING SHOP SCHEDULING VIA FLOW TECHNIQUES

p the maximum number of operations in any job

the number of operations of job J,

w the total number of operations

11ma1 the maximum machine load

Chapter 6

Symbol Meaning

A a p x q non-negative matrix

a, the ith row of A

bi ith entry in b

CP(y) a minimum cost point subject to costs y

C costs, c = YTA

Sapproxim ate costs, tY - /TAi

d a value that each component of x' is an integral multiple of

d', d" delay values

Hi a heap associated with job J,

p' pointers to values in Hi

M the number of packing constraints

P a polytope, a convex set in R1

Vid the vector associated with assigning delay d to job J,

d a precomputed list to speed the computation of Cd

an approximate solution to OPT

zi a point in polytope Pi

y dual variables

7 an amount by which each approximate dual variable is scaled

A max, aiz/b,

0 a potential function

p maxi max.Ip aiz/b,, the width of P relative to Ax 5 b



6.3. THE SOLUTION 173

PS the width of P• relative to AYz' < b

the number of bits of accuracy in each approximate dual variable



Bibliography

[1] I. Adler, N. Karmarkar, M. Resende, and G. Veiga. An implementation of Karmarkar's
algorithm for linear programming. Mathematical Programming, 44:297-335, 1989.

[2] R. K. Ahuja, A.V. Goldberg, J. B. Orlin, and R.E. Tarjan. Finding minimum cost flows

by double scaling. Sloan Working Paper 2047-88, MIT, Cambridge, MA, 1988.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows. In G.L. Nemhauser, A. H.
G. Rinnooy Kan, and M. J. Todd, editors, Handbook in operations research and manage-
ment science, Volume 1: Optimization, pages 211-360. North-Holland, Amsterdam, 1990.

[4] D. Applegate and B. Cook. A computational study of the job-shop scheduling problem.
ORSA Journal of Computing, 3:149-156, 1991.

[5] A. A. Assad. Multicommodity network flows - a survey. Networks, 8:37-91, 1978.

[6] I. B~irnny and T. Fiala. T6bbg~pes iitemezesi probl6mik kbzel optimtils megoldisa.
Szigma-Mat. -K6zgazdasdgi Folydirst, 15:177-191, 1982.

[7] I.S. Belov and Ya. N. Stolin. An algorithm in a single path operations scheduling problem.
In Mathematical Economics and Functional Analysis [In Russian], pages 248-257. Nauka,
Moscow, 1974.

[8] D. P. Bertsekas and P. Tseng. RELAXT-III: A new and improved version of the RELAX

code. Technical Report LIDS-P-1990, MIT, July 1990.

[9] S. N. Bhatt and F. T. Leighton. A framework for solving VLSI graph layour problems.

Journal of Computer and System Sciences, 28, 1984.

[10] J. Cheriyan, October 1991. Private communication.

[11] V. Chvwtal. Linear Programming. W. H. Freeman and Company, 1983.

[12] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algo-
rithms. MIT Press/McGraw-Hill, 1990.

[13] R. Dial. Algorithm 360: Shortest path forest with topological ordering. Communications
of the ACM, 12:632-633, 1969.

[14] P. Elias, A. Feinstein, and C. E. Shannon Note on maximum flow through a network. IRE

Transactions on Information Theory IT-2, pages 117-199, 1956.

175



176 BIBLIOGRAPHY

[15] T. Fiala. Kbzelit6 algorithmus a h~irom gip probl~mira. Alkalmazott Matematikai Lapok,
3:389-398, 1977.

[16] T. Fiala. An algorithm for the open-shop problem. Mathematics of Operations Research,
8(1):100-109, 1983.

[17] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM, 34:596-615, 1987.

[18] H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for network problems. SIAM
Journal on Computing, 18:1013-1036, 1989.

[19] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W.H. Freeman and Company, New York, 1979.

[20] A. V. Goldberg, Personal communication. Jan., 1991.

[211 A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by canceling negative
cycles. In Proceedings of the 20th Annual A CM Symposium on Theory of Computing, pages
388-397, 1988.

[22] A. V. Goldberg and R. E. Tarjan. Solving minimum-cost flow problems by successive
approximation. Mathematics of Operations Research, 15(3):430-466, 1990.

[23] D. Goldfarb and M. Grigoriadis. A computational comparison of the Dinic and Network
Simplex methods for maximum flow. Annals of Operations Research, 13:83-123, 1988.

[24] T. Gonzalez and S. Sahni. Open shop scheduling to minimize finish time. Journal of the
ACM, 23:665-679, 1976.

(25] T. Gonzalez and S. Sahni. Flowshop and jobshop schedules: complexity and approximation.
Operations Research, 26:36-52, 1978.

[26] M. D. Grigoriadis and L. G. Khachiyan. Fast approximation schemes for convex programs
with many blocks and coupling constraints. Technical Report DCS-TR-273, Department
of Computer Science, Rutgers University, New Brunswick, NJ, March 1991.

[27] M. D. Hansen. Approximation algorithms for geometric embeddings in the plane with
applications to parallel processing problems. In Proceedings of the 30th Annual Symposium
on Foundations of Computer Science, pages 604-610. IEEE, October 1989.

[28] S. M. Johnson. Optimal two- and three-stage production schedules with setup times in-
cluded. Naval Research Logistics Quarterly, pages 61-68, 1954.

[29] L. R. Ford Jr. and D. R. Fulkerson. Flows in networks. Princeton University Press, 1956.

[301 S. Kapoor and P. M. Vaidya. Fast algorithms for convex quadratic programming and
multicommodity flows. In Proceedings of the 18th Annual ACM Symposium on Theory of
Computing, pages 147-159, 1986.



BIBLIOGRAPHY 177

[31] J. Kennington. A survey of linear cost multicommodity network flows. Operations Research,
26:206-236, 1978.

[32] J. Kennington. A primal partitioning code for solving multicommodity flow problems (ver-
sion 1). Technical Report Techincal Report 79009, Deptartment of Industrial Engineering
and Operations Research, Southern Methodist University, 1979.

[33] P. Klein, A. Agrawal, R. Ravi, and S. Rao. Approximation through multicommodity flow.
In Proceedings of the 1st Annual Symposium on Foundations of Computer Science, pages
726-737, 1990.

[34] P. Klein, S. Kang, and J. Borger. Approximating concurrent flow with uniform demands
and capacities: an implementation. In Proceedings of DIMACS Implementation Challenge
Workshop: Network Flows and Matching, October 1991. To appear.

[35] P. Klein, S. A. Plotkin, C. Stein, and t. Tardos. Faster approximation algorithms for the
unit capacity concurrent flow problem with applications to routing and finding sparse cuts.
Technical Report 961, School of Operations Research and Industrial Engineering, Cornell
University, 1991. A preliminary version of this paper appeared in Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing, pages 310-321, 1990. To appear in
SIAM J. Computing.

[36] P. Klein, C. Stein, and t. Tardos. Leighton-Rao might be practical: faster approximation
algorithms for concurrent flow with uniform capacities. In Proceedings of the 22nd Annual
ACM Symposium on Theory of Computing, pages 310-321, May 1990.

[37] D. Klingman, A. Napier, and J. Stutz. NETGEN: A program for generating large scale
capacitated assignment, transportation, and minimum cost flow network problems. Man-
agement Science, 20:814-821, 1974.

[38] E.L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and
Winston, 1976.

[39] E.L. Lawler, J.K. Lenstra, A.H.G. Rinooy Kan, and D.B. Shmoys. Sequencing and schedul-
ing: Algorithms and complexity. Technical Report BS-R8909, Centre for Mathematics
and Computer Science, Amsterdam, The Netherlands, 1989. To appear in Handbooks in
Operations Research and Management Science, Volume 4: Logistics of Production and
Inventory.

[40] F. T. Leighton, November 1989. Private communication.

[41] T. Leighton, B. Maggs, and S. Rao. Universal packet routing algorithms. In Proceedings of
the 29th Annual Symposium on Foundations of Computer Science, pages 256-269, 1988.

[42] T. Leighton, F. Makedon, S. Plotkin, C. Stein, It. Tardos, and S. Tragoudas. Fast approx-
imation algorithms for multicommodity flow problems. In Proceedings of the 23rd Annual
ACM Symposium on Theory of Computing, pages 101-111, 1991. To appear in JCSS.



178 BIBLIOGRAPHY

[43] T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multi-
commodity flow problems with applications to approximation algorithms. In Proceedings
of the p9th Annual Symposium on Foundations of Computer Science, pages 422-431, 1988.

[44] T. Leong, P. Shor, and C. Stein. Implementation of a combinatorial multicommodity
flow algorithm. In Proceedings of DIMACS Implementation Challenge Workihop: Network
Flows and Matching, October 1991. To appear.

[45] G. F. Lev, N. Pippenger, and L. G. Valiant. A fast parallel algorithm for routing in
permutation networks. IEEE Transactions on Computers, C-30:93-100, 1981.

[46] F. Makedon and S. Tragoudas. Approximating the minimum net expansion: Near optimal
solutions to circuit partitioning problems. In Procedings of the 1990 Workshop on Graph
Theoretic Concepts in Computer Science, June 1990.

[47] B.A. Murtaugh and M.A. Saunders. MINOS 5.0 user's guide. Technical Report Technical
Report 83-20, Systemns Optimizaiton Laboratory, Stanford University, 1983.

[481 S. Plotkin, D. B. Shmoys, and E. Tardos. Fast approximation algorithms for fractional
packing and covering problems. In Proceedings of the 32nd Annual Symposium on Foun-
dations of Computer Science, 1991. To appear.

[49] P. Raghavan. Probabilistic construction of deterministic algorithms: approximating pack-
ing integer programs. In Proceedings of the 27th Annual Symposium on Foundations of
Computer Science, pages 10-18, 1986.

[50] P. Raghavan. Probabilistic construction of deterministic algorithms: approximating pack-
ing integer programs. Journal of Computer and System Sciences, 37:130-143, 1988.

[51] P. Raghavan and C. D. Thompson. Provably good routing in graphs: regular arrays. In
Proceedings of the 17th Annual ACM Symposium on Theory of Computing, pages 79-87,
1985.

[52] P. Raghavan and C. D. Thompson. Randomized rounding: a technique for provably good
algorithms and algorithmic proofs. Combinatorica, 7:365 - 374, 1987.

[53] R. Ravi, A. Agrawal, and P. Klein. Ordering problems approximated: single-processsor
scheduling and interval graph completion. In Proceedings of the 1991 ICALP Conference,
1991. To appear.

[54] R. Schneur. Scaling algorithms for multicommodity flow problems and network flow prob-

lems with side constraints. PhD thesis, MIT, Cambridge, MA, February 1991.

[55] A. Schrijver. Theory of linear and integer programming. John Wiley and Sons, 1986.

[561 S. V. Sevast'yanov. On an asymptotic approach to some problems in scheduling theory.
In Abstracts of papers at 3rd All-Union Conf. of Problems of Theoretical Cybernetics [in
Russian], pages 67-69. Inst. Mat. Sibirsk. Otdel. Akad. Nauk SSSR, Novosibirsk, 1974.

[57] S.V. Sevast'yanov. Efficient construction of schedules close to optimal for the cases of

arbitrary and alternative routes of parts. Soviet Math. Dokl., 29(3):447-450, 1984.



BIBLIOGRAPHY 179

[58] S.V. Sevast'yanov. Bounding algorithm for the routing problem with arbitrary paths and
alternative servers. Kibernetika, 22(6):74-79, 1986. Translation in Cybernetics 22, pages
773-780.

[59] F. Shahrokhi and D. W. Matula. The maximum concurrent flow problem. Journal of the
ACM, 37:318 - 334, 1990.

[60] D. B. Shmoys, C. Stein, and J. Wein. Improved approximation algorithms for shop schedul-
ing problems. In Proceedings of the 2nd ACM-SIAM Symposium on Discrete Algorithms,
pages 148-157, January 1991.

[61] D. B. Shmoys, J. Wein, and D.P. Williamson. Scheduling parallel machines on-line. In
Proceedings of the 32nd Annual Symposium on Foundations of Computer Science, pages
131-140, October 1991.

[62] D.B. Shmoys. Personal communication, 1990.

[63] D D. Sleator and R.E. Tarjan. A data structure for dynamic trees. Journal of Computer
and System Sciences, 26:362-391, 1983.

[64] D.D. Sleator and R.E. Tarjan. Self-adjusting binary search trees. Journal of the ACM,
32:652-686, 1985.

[65] A. Srinivasan. A genera!.;,ation of Chernoff-Hoeffding bounds, with applications. Unpub-
lished Manuscript, 1992.

[66] S. Tragoudas. VLSI partitioning approximation algorithms based on multicommodity flow
and other techniques. PhD thesis, University of Texax at Dallas, 1991.

[67] P. M. Vaidya. Speeding up linear programming using fast matrix multiplication. In Proceed-
ings of the 30th Annual Symposium on Foundations of Computer Science, pages 332-337,
1989.

[68] J. Wein. Algorithms for Scheduling and Network Problems. PhD thesis, MIT, Cambridge,
MA, August 1991.

[69] D. P. Williamson. The non-approximability of shop scheduling. Unpublished Manuscript,
1991.

[70] D. P. Williamson, L. Hall, J. A. Hoogeven, C. A. J. Hurkens, J. K. Lenstra, and D. B.
Shmoys. Short shop schedules. Unpublished Manuscript, 1992.

[71] M.A. Yakovleva. A problem on minimum transportation cost. In V.S. Nemchinov, editor,
Applications of Mathematics in Economic Research, pages 390-399. Izdat. Social'no-Ekon.
Lit., Moscow, 1959.



DARPA OFFICIAL DISTRIBUTION LIST

DIRECTOR 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency (DARPA)
1400 Wilson Boulevard
Arlington, VA 22209

OFFICE OF NAVAL RESEARCH 2 copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. Gary Koop, Code 433

DIRECTOR, CODE 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

DEFENSE TECHNICAL INFORMATION CENTER 2 copies
Cameron Station
Alexandria, VA 22314

NATIONAL SCIENCE FOUNDATION 2 copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

HEAD, CODE 38 1 copy
Research Department
Naval Weapons Center
China Lake, CA 93555


